1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 /*
  26  * Copyright (c) 2010, Intel Corporation.
  27  * All rights reserved.
  28  */
  29 /*
  30  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
  31  */
  32 
  33 /*
  34  * To understand how the apix module interacts with the interrupt subsystem read
  35  * the theory statement in uts/i86pc/os/intr.c.
  36  */
  37 
  38 /*
  39  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
  40  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
  41  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
  42  * PSMI 1.5 extensions are supported in Solaris Nevada.
  43  * PSMI 1.6 extensions are supported in Solaris Nevada.
  44  * PSMI 1.7 extensions are supported in Solaris Nevada.
  45  */
  46 #define PSMI_1_7
  47 
  48 #include <sys/processor.h>
  49 #include <sys/time.h>
  50 #include <sys/psm.h>
  51 #include <sys/smp_impldefs.h>
  52 #include <sys/cram.h>
  53 #include <sys/acpi/acpi.h>
  54 #include <sys/acpica.h>
  55 #include <sys/psm_common.h>
  56 #include <sys/pit.h>
  57 #include <sys/ddi.h>
  58 #include <sys/sunddi.h>
  59 #include <sys/ddi_impldefs.h>
  60 #include <sys/pci.h>
  61 #include <sys/promif.h>
  62 #include <sys/x86_archext.h>
  63 #include <sys/cpc_impl.h>
  64 #include <sys/uadmin.h>
  65 #include <sys/panic.h>
  66 #include <sys/debug.h>
  67 #include <sys/archsystm.h>
  68 #include <sys/trap.h>
  69 #include <sys/machsystm.h>
  70 #include <sys/sysmacros.h>
  71 #include <sys/cpuvar.h>
  72 #include <sys/rm_platter.h>
  73 #include <sys/privregs.h>
  74 #include <sys/note.h>
  75 #include <sys/pci_intr_lib.h>
  76 #include <sys/spl.h>
  77 #include <sys/clock.h>
  78 #include <sys/cyclic.h>
  79 #include <sys/dditypes.h>
  80 #include <sys/sunddi.h>
  81 #include <sys/x_call.h>
  82 #include <sys/reboot.h>
  83 #include <sys/mach_intr.h>
  84 #include <sys/apix.h>
  85 #include <sys/apix_irm_impl.h>
  86 
  87 static int apix_probe();
  88 static void apix_init();
  89 static void apix_picinit(void);
  90 static int apix_intr_enter(int, int *);
  91 static void apix_intr_exit(int, int);
  92 static void apix_setspl(int);
  93 static int apix_disable_intr(processorid_t);
  94 static void apix_enable_intr(processorid_t);
  95 static int apix_get_clkvect(int);
  96 static int apix_get_ipivect(int, int);
  97 static void apix_post_cyclic_setup(void *);
  98 static int apix_post_cpu_start();
  99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
 100     psm_intr_op_t, int *);
 101 
 102 /*
 103  * Helper functions for apix_intr_ops()
 104  */
 105 static void apix_redistribute_compute(void);
 106 static int apix_get_pending(apix_vector_t *);
 107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t);
 108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *);
 109 static char *apix_get_apic_type(void);
 110 static int apix_intx_get_pending(int);
 111 static void apix_intx_set_mask(int irqno);
 112 static void apix_intx_clear_mask(int irqno);
 113 static int apix_intx_get_shared(int irqno);
 114 static void apix_intx_set_shared(int irqno, int delta);
 115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int,
 116     struct intrspec *);
 117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *);
 118 
 119 extern int apic_clkinit(int);
 120 
 121 /* IRM initialization for APIX PSM module */
 122 extern void apix_irm_init(void);
 123 
 124 extern int irm_enable;
 125 
 126 /*
 127  *      Local static data
 128  */
 129 static struct   psm_ops apix_ops = {
 130         apix_probe,
 131 
 132         apix_init,
 133         apix_picinit,
 134         apix_intr_enter,
 135         apix_intr_exit,
 136         apix_setspl,
 137         apix_addspl,
 138         apix_delspl,
 139         apix_disable_intr,
 140         apix_enable_intr,
 141         NULL,                   /* psm_softlvl_to_irq */
 142         NULL,                   /* psm_set_softintr */
 143 
 144         apic_set_idlecpu,
 145         apic_unset_idlecpu,
 146 
 147         apic_clkinit,
 148         apix_get_clkvect,
 149         NULL,                   /* psm_hrtimeinit */
 150         apic_gethrtime,
 151 
 152         apic_get_next_processorid,
 153         apic_cpu_start,
 154         apix_post_cpu_start,
 155         apic_shutdown,
 156         apix_get_ipivect,
 157         apic_send_ipi,
 158 
 159         NULL,                   /* psm_translate_irq */
 160         NULL,                   /* psm_notify_error */
 161         NULL,                   /* psm_notify_func */
 162         apic_timer_reprogram,
 163         apic_timer_enable,
 164         apic_timer_disable,
 165         apix_post_cyclic_setup,
 166         apic_preshutdown,
 167         apix_intr_ops,          /* Advanced DDI Interrupt framework */
 168         apic_state,             /* save, restore apic state for S3 */
 169         apic_cpu_ops,           /* CPU control interface. */
 170 };
 171 
 172 struct psm_ops *psmops = &apix_ops;
 173 
 174 static struct   psm_info apix_psm_info = {
 175         PSM_INFO_VER01_7,                       /* version */
 176         PSM_OWN_EXCLUSIVE,                      /* ownership */
 177         &apix_ops,                          /* operation */
 178         APIX_NAME,                              /* machine name */
 179         "apix MPv1.4 compatible",
 180 };
 181 
 182 static void *apix_hdlp;
 183 
 184 static int apix_is_enabled = 0;
 185 
 186 /*
 187  * Flag to indicate if APIX is to be enabled only for platforms
 188  * with specific hw feature(s).
 189  */
 190 int apix_hw_chk_enable = 1;
 191 
 192 /*
 193  * Hw features that are checked for enabling APIX support.
 194  */
 195 #define APIX_SUPPORT_X2APIC     0x00000001
 196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC;
 197 
 198 /*
 199  * apix_lock is used for cpu selection and vector re-binding
 200  */
 201 lock_t apix_lock;
 202 apix_impl_t *apixs[NCPU];
 203 /*
 204  * Mapping between device interrupt and the allocated vector. Indexed
 205  * by major number.
 206  */
 207 apix_dev_vector_t **apix_dev_vector;
 208 /*
 209  * Mapping between device major number and cpu id. It gets used
 210  * when interrupt binding policy round robin with affinity is
 211  * applied. With that policy, devices with the same major number
 212  * will be bound to the same CPU.
 213  */
 214 processorid_t *apix_major_to_cpu;       /* major to cpu mapping */
 215 kmutex_t apix_mutex;    /* for apix_dev_vector & apix_major_to_cpu */
 216 
 217 int apix_nipis = 16;    /* Maximum number of IPIs */
 218 /*
 219  * Maximum number of vectors in a CPU that can be used for interrupt
 220  * allocation (including IPIs and the reserved vectors).
 221  */
 222 int apix_cpu_nvectors = APIX_NVECTOR;
 223 
 224 /* gcpu.h */
 225 
 226 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);
 227 extern void apic_change_eoi();
 228 
 229 /*
 230  *      This is the loadable module wrapper
 231  */
 232 
 233 int
 234 _init(void)
 235 {
 236         if (apic_coarse_hrtime)
 237                 apix_ops.psm_gethrtime = &apic_gettime;
 238         return (psm_mod_init(&apix_hdlp, &apix_psm_info));
 239 }
 240 
 241 int
 242 _fini(void)
 243 {
 244         return (psm_mod_fini(&apix_hdlp, &apix_psm_info));
 245 }
 246 
 247 int
 248 _info(struct modinfo *modinfop)
 249 {
 250         return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop));
 251 }
 252 
 253 static int
 254 apix_probe()
 255 {
 256         int rval;
 257 
 258         if (apix_enable == 0)
 259                 return (PSM_FAILURE);
 260 
 261         /* check for hw features if specified  */
 262         if (apix_hw_chk_enable) {
 263                 /* check if x2APIC mode is supported */
 264                 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) ==
 265                     APIX_SUPPORT_X2APIC) {
 266                         if (!((apic_local_mode() == LOCAL_X2APIC) ||
 267                             apic_detect_x2apic())) {
 268                                 /* x2APIC mode is not supported in the hw */
 269                                 apix_enable = 0;
 270                         }
 271                 }
 272                 if (apix_enable == 0)
 273                         return (PSM_FAILURE);
 274         }
 275 
 276         rval = apic_probe_common(apix_psm_info.p_mach_idstring);
 277         if (rval == PSM_SUCCESS)
 278                 apix_is_enabled = 1;
 279         else
 280                 apix_is_enabled = 0;
 281         return (rval);
 282 }
 283 
 284 /*
 285  * Initialize the data structures needed by pcplusmpx module.
 286  * Specifically, the data structures used by addspl() and delspl()
 287  * routines.
 288  */
 289 static void
 290 apix_softinit()
 291 {
 292         int i, *iptr;
 293         apix_impl_t *hdlp;
 294         int nproc;
 295 
 296         nproc = max(apic_nproc, apic_max_nproc);
 297 
 298         hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP);
 299         for (i = 0; i < nproc; i++) {
 300                 apixs[i] = &hdlp[i];
 301                 apixs[i]->x_cpuid = i;
 302                 LOCK_INIT_CLEAR(&apixs[i]->x_lock);
 303         }
 304 
 305         /* cpu 0 is always up (for now) */
 306         apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
 307 
 308         iptr = (int *)&apic_irq_table[0];
 309         for (i = 0; i <= APIC_MAX_VECTOR; i++) {
 310                 apic_level_intr[i] = 0;
 311                 *iptr++ = NULL;
 312         }
 313         mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
 314 
 315         apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt,
 316             KM_SLEEP);
 317 
 318         if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
 319                 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt,
 320                     KM_SLEEP);
 321                 for (i = 0; i < devcnt; i++)
 322                         apix_major_to_cpu[i] = IRQ_UNINIT;
 323         }
 324 
 325         mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL);
 326 }
 327 
 328 static int
 329 apix_get_pending_spl(void)
 330 {
 331         int cpuid = CPU->cpu_id;
 332 
 333         return (bsrw_insn(apixs[cpuid]->x_intr_pending));
 334 }
 335 
 336 static uintptr_t
 337 apix_get_intr_handler(int cpu, short vec)
 338 {
 339         apix_vector_t *apix_vector;
 340 
 341         ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR);
 342         if (cpu >= apic_nproc)
 343                 return (NULL);
 344 
 345         apix_vector = apixs[cpu]->x_vectbl[vec];
 346 
 347         return ((uintptr_t)(apix_vector->v_autovect));
 348 }
 349 
 350 static void
 351 apix_init()
 352 {
 353         extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *);
 354 
 355         APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n"));
 356 
 357         do_interrupt_common = apix_do_interrupt;
 358         addintr = apix_add_avintr;
 359         remintr = apix_rem_avintr;
 360         get_pending_spl = apix_get_pending_spl;
 361         get_intr_handler = apix_get_intr_handler;
 362         psm_get_localapicid = apic_get_localapicid;
 363         psm_get_ioapicid = apic_get_ioapicid;
 364 
 365         apix_softinit();
 366 
 367 #if !defined(__amd64)
 368         if (cpuid_have_cr8access(CPU))
 369                 apic_have_32bit_cr8 = 1;
 370 #endif
 371 
 372         /*
 373          * Initialize IRM pool parameters
 374          */
 375         if (irm_enable) {
 376                 int     i;
 377                 int     lowest_irq;
 378                 int     highest_irq;
 379 
 380                 /* number of CPUs present */
 381                 apix_irminfo.apix_ncpus = apic_nproc;
 382                 /* total number of entries in all of the IOAPICs present */
 383                 lowest_irq = apic_io_vectbase[0];
 384                 highest_irq = apic_io_vectend[0];
 385                 for (i = 1; i < apic_io_max; i++) {
 386                         if (apic_io_vectbase[i] < lowest_irq)
 387                                 lowest_irq = apic_io_vectbase[i];
 388                         if (apic_io_vectend[i] > highest_irq)
 389                                 highest_irq = apic_io_vectend[i];
 390                 }
 391                 apix_irminfo.apix_ioapic_max_vectors =
 392                     highest_irq - lowest_irq + 1;
 393                 /*
 394                  * Number of available per-CPU vectors excluding
 395                  * reserved vectors for Dtrace, int80, system-call,
 396                  * fast-trap, etc.
 397                  */
 398                 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR -
 399                     APIX_SW_RESERVED_VECTORS;
 400 
 401                 /* Number of vectors (pre) allocated (SCI and HPET) */
 402                 apix_irminfo.apix_vectors_allocated = 0;
 403                 if (apic_hpet_vect != -1)
 404                         apix_irminfo.apix_vectors_allocated++;
 405                 if (apic_sci_vect != -1)
 406                         apix_irminfo.apix_vectors_allocated++;
 407         }
 408 }
 409 
 410 static void
 411 apix_init_intr()
 412 {
 413         processorid_t   cpun = psm_get_cpu_id();
 414         uint_t nlvt;
 415         uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
 416         extern void cmi_cmci_trap(void);
 417 
 418         apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
 419 
 420         if (apic_mode == LOCAL_APIC) {
 421                 /*
 422                  * We are running APIC in MMIO mode.
 423                  */
 424                 if (apic_flat_model) {
 425                         apic_reg_ops->apic_write(APIC_FORMAT_REG,
 426                             APIC_FLAT_MODEL);
 427                 } else {
 428                         apic_reg_ops->apic_write(APIC_FORMAT_REG,
 429                             APIC_CLUSTER_MODEL);
 430                 }
 431 
 432                 apic_reg_ops->apic_write(APIC_DEST_REG,
 433                     AV_HIGH_ORDER >> cpun);
 434         }
 435 
 436         if (apic_directed_EOI_supported()) {
 437                 /*
 438                  * Setting the 12th bit in the Spurious Interrupt Vector
 439                  * Register suppresses broadcast EOIs generated by the local
 440                  * APIC. The suppression of broadcast EOIs happens only when
 441                  * interrupts are level-triggered.
 442                  */
 443                 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
 444         }
 445 
 446         /* need to enable APIC before unmasking NMI */
 447         apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
 448 
 449         /*
 450          * Presence of an invalid vector with delivery mode AV_FIXED can
 451          * cause an error interrupt, even if the entry is masked...so
 452          * write a valid vector to LVT entries along with the mask bit
 453          */
 454 
 455         /* All APICs have timer and LINT0/1 */
 456         apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
 457         apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
 458         apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);    /* enable NMI */
 459 
 460         /*
 461          * On integrated APICs, the number of LVT entries is
 462          * 'Max LVT entry' + 1; on 82489DX's (non-integrated
 463          * APICs), nlvt is "3" (LINT0, LINT1, and timer)
 464          */
 465 
 466         if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
 467                 nlvt = 3;
 468         } else {
 469                 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
 470                     0xFF) + 1;
 471         }
 472 
 473         if (nlvt >= 5) {
 474                 /* Enable performance counter overflow interrupt */
 475 
 476                 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
 477                         apic_enable_cpcovf_intr = 0;
 478                 if (apic_enable_cpcovf_intr) {
 479                         if (apic_cpcovf_vect == 0) {
 480                                 int ipl = APIC_PCINT_IPL;
 481 
 482                                 apic_cpcovf_vect = apix_get_ipivect(ipl, -1);
 483                                 ASSERT(apic_cpcovf_vect);
 484 
 485                                 (void) add_avintr(NULL, ipl,
 486                                     (avfunc)kcpc_hw_overflow_intr,
 487                                     "apic pcint", apic_cpcovf_vect,
 488                                     NULL, NULL, NULL, NULL);
 489                                 kcpc_hw_overflow_intr_installed = 1;
 490                                 kcpc_hw_enable_cpc_intr =
 491                                     apic_cpcovf_mask_clear;
 492                         }
 493                         apic_reg_ops->apic_write(APIC_PCINT_VECT,
 494                             apic_cpcovf_vect);
 495                 }
 496         }
 497 
 498         if (nlvt >= 6) {
 499                 /* Only mask TM intr if the BIOS apparently doesn't use it */
 500 
 501                 uint32_t lvtval;
 502 
 503                 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
 504                 if (((lvtval & AV_MASK) == AV_MASK) ||
 505                     ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
 506                         apic_reg_ops->apic_write(APIC_THERM_VECT,
 507                             AV_MASK|APIC_RESV_IRQ);
 508                 }
 509         }
 510 
 511         /* Enable error interrupt */
 512 
 513         if (nlvt >= 4 && apic_enable_error_intr) {
 514                 if (apic_errvect == 0) {
 515                         int ipl = 0xf;  /* get highest priority intr */
 516                         apic_errvect = apix_get_ipivect(ipl, -1);
 517                         ASSERT(apic_errvect);
 518                         /*
 519                          * Not PSMI compliant, but we are going to merge
 520                          * with ON anyway
 521                          */
 522                         (void) add_avintr(NULL, ipl,
 523                             (avfunc)apic_error_intr, "apic error intr",
 524                             apic_errvect, NULL, NULL, NULL, NULL);
 525                 }
 526                 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
 527                 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
 528                 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
 529         }
 530 
 531         /* Enable CMCI interrupt */
 532         if (cmi_enable_cmci) {
 533                 mutex_enter(&cmci_cpu_setup_lock);
 534                 if (cmci_cpu_setup_registered == 0) {
 535                         mutex_enter(&cpu_lock);
 536                         register_cpu_setup_func(cmci_cpu_setup, NULL);
 537                         mutex_exit(&cpu_lock);
 538                         cmci_cpu_setup_registered = 1;
 539                 }
 540                 mutex_exit(&cmci_cpu_setup_lock);
 541 
 542                 if (apic_cmci_vect == 0) {
 543                         int ipl = 0x2;
 544                         apic_cmci_vect = apix_get_ipivect(ipl, -1);
 545                         ASSERT(apic_cmci_vect);
 546 
 547                         (void) add_avintr(NULL, ipl,
 548                             (avfunc)cmi_cmci_trap, "apic cmci intr",
 549                             apic_cmci_vect, NULL, NULL, NULL, NULL);
 550                 }
 551                 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
 552         }
 553 
 554         apic_reg_ops->apic_write_task_reg(0);
 555 }
 556 
 557 static void
 558 apix_picinit(void)
 559 {
 560         int i, j;
 561         uint_t isr;
 562 
 563         APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n"));
 564 
 565         /*
 566          * initialize interrupt remapping before apic
 567          * hardware initialization
 568          */
 569         apic_intrmap_init(apic_mode);
 570         if (apic_vt_ops == psm_vt_ops)
 571                 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR;
 572 
 573         /*
 574          * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
 575          * bit on without clearing it with EOI.  Since softint
 576          * uses vector 0x20 to interrupt itself, so softint will
 577          * not work on this machine.  In order to fix this problem
 578          * a check is made to verify all the isr bits are clear.
 579          * If not, EOIs are issued to clear the bits.
 580          */
 581         for (i = 7; i >= 1; i--) {
 582                 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
 583                 if (isr != 0)
 584                         for (j = 0; ((j < 32) && (isr != 0)); j++)
 585                                 if (isr & (1 << j)) {
 586                                         apic_reg_ops->apic_write(
 587                                             APIC_EOI_REG, 0);
 588                                         isr &= ~(1 << j);
 589                                         apic_error |= APIC_ERR_BOOT_EOI;
 590                                 }
 591         }
 592 
 593         /* set a flag so we know we have run apic_picinit() */
 594         apic_picinit_called = 1;
 595         LOCK_INIT_CLEAR(&apic_gethrtime_lock);
 596         LOCK_INIT_CLEAR(&apic_ioapic_lock);
 597         LOCK_INIT_CLEAR(&apic_error_lock);
 598         LOCK_INIT_CLEAR(&apic_mode_switch_lock);
 599 
 600         picsetup();      /* initialise the 8259 */
 601 
 602         /* add nmi handler - least priority nmi handler */
 603         LOCK_INIT_CLEAR(&apic_nmi_lock);
 604 
 605         if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
 606             "apix NMI handler", (caddr_t)NULL))
 607                 cmn_err(CE_WARN, "apix: Unable to add nmi handler");
 608 
 609         apix_init_intr();
 610 
 611         /* enable apic mode if imcr present */
 612         if (apic_imcrp) {
 613                 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
 614                 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
 615         }
 616 
 617         ioapix_init_intr(IOAPIC_MASK);
 618 
 619         /* setup global IRM pool if applicable */
 620         if (irm_enable)
 621                 apix_irm_init();
 622 }
 623 
 624 static __inline__ void
 625 apix_send_eoi(void)
 626 {
 627         if (apic_mode == LOCAL_APIC)
 628                 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
 629         else
 630                 X2APIC_WRITE(APIC_EOI_REG, 0);
 631 }
 632 
 633 /*
 634  * platform_intr_enter
 635  *
 636  *      Called at the beginning of the interrupt service routine, but unlike
 637  *      pcplusmp, does not mask interrupts. An EOI is given to the interrupt
 638  *      controller to enable other HW interrupts but interrupts are still
 639  *      masked by the IF flag.
 640  *
 641  *      Return -1 for spurious interrupts
 642  *
 643  */
 644 static int
 645 apix_intr_enter(int ipl, int *vectorp)
 646 {
 647         struct cpu *cpu = CPU;
 648         uint32_t cpuid = CPU->cpu_id;
 649         apic_cpus_info_t *cpu_infop;
 650         uchar_t vector;
 651         apix_vector_t *vecp;
 652         int nipl = -1;
 653 
 654         /*
 655          * The real vector delivered is (*vectorp + 0x20), but our caller
 656          * subtracts 0x20 from the vector before passing it to us.
 657          * (That's why APIC_BASE_VECT is 0x20.)
 658          */
 659         vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT;
 660 
 661         cpu_infop = &apic_cpus[cpuid];
 662         if (vector == APIC_SPUR_INTR) {
 663                 cpu_infop->aci_spur_cnt++;
 664                 return (APIC_INT_SPURIOUS);
 665         }
 666 
 667         vecp = xv_vector(cpuid, vector);
 668         if (vecp == NULL) {
 669                 if (APIX_IS_FAKE_INTR(vector))
 670                         nipl = apix_rebindinfo.i_pri;
 671                 apix_send_eoi();
 672                 return (nipl);
 673         }
 674         nipl = vecp->v_pri;
 675 
 676         /* if interrupted by the clock, increment apic_nsec_since_boot */
 677         if (vector == (apic_clkvect + APIC_BASE_VECT)) {
 678                 if (!apic_oneshot) {
 679                         /* NOTE: this is not MT aware */
 680                         apic_hrtime_stamp++;
 681                         apic_nsec_since_boot += apic_nsec_per_intr;
 682                         apic_hrtime_stamp++;
 683                         last_count_read = apic_hertz_count;
 684                         apix_redistribute_compute();
 685                 }
 686 
 687                 apix_send_eoi();
 688 
 689                 return (nipl);
 690         }
 691 
 692         ASSERT(vecp->v_state != APIX_STATE_OBSOLETED);
 693 
 694         /* pre-EOI handling for level-triggered interrupts */
 695         if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) &&
 696             (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum])
 697                 apix_level_intr_pre_eoi(vecp->v_inum);
 698 
 699         /* send back EOI */
 700         apix_send_eoi();
 701 
 702         cpu_infop->aci_current[nipl] = vector;
 703         if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) {
 704                 cpu_infop->aci_curipl = (uchar_t)nipl;
 705                 cpu_infop->aci_ISR_in_progress |= 1 << nipl;
 706         }
 707 
 708 #ifdef  DEBUG
 709         if (vector >= APIX_IPI_MIN)
 710                 return (nipl);  /* skip IPI */
 711 
 712         APIC_DEBUG_BUF_PUT(vector);
 713         APIC_DEBUG_BUF_PUT(vecp->v_inum);
 714         APIC_DEBUG_BUF_PUT(nipl);
 715         APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
 716         if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
 717                 drv_usecwait(apic_stretch_interrupts);
 718 #endif /* DEBUG */
 719 
 720         return (nipl);
 721 }
 722 
 723 /*
 724  * Any changes made to this function must also change X2APIC
 725  * version of intr_exit.
 726  */
 727 static void
 728 apix_intr_exit(int prev_ipl, int arg2)
 729 {
 730         int cpuid = psm_get_cpu_id();
 731         apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid];
 732         apix_impl_t *apixp = apixs[cpuid];
 733 
 734         UNREFERENCED_1PARAMETER(arg2);
 735 
 736         cpu_infop->aci_curipl = (uchar_t)prev_ipl;
 737         /* ISR above current pri could not be in progress */
 738         cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
 739 
 740         if (apixp->x_obsoletes != NULL) {
 741                 if (APIX_CPU_LOCK_HELD(cpuid))
 742                         return;
 743 
 744                 APIX_ENTER_CPU_LOCK(cpuid);
 745                 (void) apix_obsolete_vector(apixp->x_obsoletes);
 746                 APIX_LEAVE_CPU_LOCK(cpuid);
 747         }
 748 }
 749 
 750 /*
 751  * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the
 752  * given ipl, but apix never uses the TPR and we never mask a subset of the
 753  * interrupts. They are either all blocked by the IF flag or all can come in.
 754  *
 755  * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts
 756  * can come in if currently enabled by the IF flag. This table shows the state
 757  * of the IF flag when we leave this function.
 758  *
 759  *    curr IF | ipl == 15       ipl != 15
 760  *    --------+---------------------------
 761  *       0    |    0                0
 762  *       1    |    0                1
 763  */
 764 static void
 765 apix_setspl(int ipl)
 766 {
 767         /*
 768          * Interrupts at ipl above this cannot be in progress, so the following
 769          * mask is ok.
 770          */
 771         apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
 772 
 773         if (ipl == XC_HI_PIL)
 774                 cli();
 775 }
 776 
 777 int
 778 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl)
 779 {
 780         uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
 781         uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
 782         apix_vector_t *vecp = xv_vector(cpuid, vector);
 783 
 784         UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
 785         ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
 786 
 787         if (vecp->v_type == APIX_TYPE_FIXED)
 788                 apix_intx_set_shared(vecp->v_inum, 1);
 789 
 790         /* There are more interrupts, so it's already been enabled */
 791         if (vecp->v_share > 1)
 792                 return (PSM_SUCCESS);
 793 
 794         /* return if it is not hardware interrupt */
 795         if (vecp->v_type == APIX_TYPE_IPI)
 796                 return (PSM_SUCCESS);
 797 
 798         /*
 799          * if apix_picinit() has not been called yet, just return.
 800          * At the end of apic_picinit(), we will call setup_io_intr().
 801          */
 802         if (!apic_picinit_called)
 803                 return (PSM_SUCCESS);
 804 
 805         (void) apix_setup_io_intr(vecp);
 806 
 807         return (PSM_SUCCESS);
 808 }
 809 
 810 int
 811 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl)
 812 {
 813         uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
 814         uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
 815         apix_vector_t *vecp = xv_vector(cpuid, vector);
 816 
 817         UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
 818         ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
 819 
 820         if (vecp->v_type == APIX_TYPE_FIXED)
 821                 apix_intx_set_shared(vecp->v_inum, -1);
 822 
 823         /* There are more interrupts */
 824         if (vecp->v_share > 1)
 825                 return (PSM_SUCCESS);
 826 
 827         /* return if it is not hardware interrupt */
 828         if (vecp->v_type == APIX_TYPE_IPI)
 829                 return (PSM_SUCCESS);
 830 
 831         if (!apic_picinit_called) {
 832                 cmn_err(CE_WARN, "apix: delete 0x%x before apic init",
 833                     virtvec);
 834                 return (PSM_SUCCESS);
 835         }
 836 
 837         apix_disable_vector(vecp);
 838 
 839         return (PSM_SUCCESS);
 840 }
 841 
 842 /*
 843  * Try and disable all interrupts. We just assign interrupts to other
 844  * processors based on policy. If any were bound by user request, we
 845  * let them continue and return failure. We do not bother to check
 846  * for cache affinity while rebinding.
 847  */
 848 static int
 849 apix_disable_intr(processorid_t cpun)
 850 {
 851         apix_impl_t *apixp = apixs[cpun];
 852         apix_vector_t *vecp, *newp;
 853         int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type;
 854 
 855         lock_set(&apix_lock);
 856 
 857         apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
 858         apic_cpus[cpun].aci_curipl = 0;
 859 
 860         /* if this is for SUSPEND operation, skip rebinding */
 861         if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
 862                 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
 863                         vecp = apixp->x_vectbl[i];
 864                         if (!IS_VECT_ENABLED(vecp))
 865                                 continue;
 866 
 867                         apix_disable_vector(vecp);
 868                 }
 869                 lock_clear(&apix_lock);
 870                 return (PSM_SUCCESS);
 871         }
 872 
 873         for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
 874                 vecp = apixp->x_vectbl[i];
 875                 if (!IS_VECT_ENABLED(vecp))
 876                         continue;
 877 
 878                 if (vecp->v_flags & APIX_VECT_USER_BOUND) {
 879                         hardbound++;
 880                         continue;
 881                 }
 882                 type = vecp->v_type;
 883 
 884                 /*
 885                  * If there are bound interrupts on this cpu, then
 886                  * rebind them to other processors.
 887                  */
 888                 loop = 0;
 889                 do {
 890                         bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE);
 891 
 892                         if (type != APIX_TYPE_MSI)
 893                                 newp = apix_set_cpu(vecp, bindcpu, &ret);
 894                         else
 895                                 newp = apix_grp_set_cpu(vecp, bindcpu, &ret);
 896                 } while ((newp == NULL) && (loop++ < apic_nproc));
 897 
 898                 if (loop >= apic_nproc) {
 899                         errbound++;
 900                         cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x",
 901                             vecp->v_cpuid, vecp->v_vector);
 902                 }
 903         }
 904 
 905         lock_clear(&apix_lock);
 906 
 907         if (hardbound || errbound) {
 908                 cmn_err(CE_WARN, "Could not disable interrupts on %d"
 909                     "due to user bound interrupts or failed operation",
 910                     cpun);
 911                 return (PSM_FAILURE);
 912         }
 913 
 914         return (PSM_SUCCESS);
 915 }
 916 
 917 /*
 918  * Bind interrupts to specified CPU
 919  */
 920 static void
 921 apix_enable_intr(processorid_t cpun)
 922 {
 923         apix_vector_t *vecp;
 924         int i, ret;
 925         processorid_t n;
 926 
 927         lock_set(&apix_lock);
 928 
 929         apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
 930 
 931         /* interrupt enabling for system resume */
 932         if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
 933                 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
 934                         vecp = xv_vector(cpun, i);
 935                         if (!IS_VECT_ENABLED(vecp))
 936                                 continue;
 937 
 938                         apix_enable_vector(vecp);
 939                 }
 940                 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
 941         }
 942 
 943         for (n = 0; n < apic_nproc; n++) {
 944                 if (!apic_cpu_in_range(n) || n == cpun ||
 945                     (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0)
 946                         continue;
 947 
 948                 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
 949                         vecp = xv_vector(n, i);
 950                         if (!IS_VECT_ENABLED(vecp) ||
 951                             vecp->v_bound_cpuid != cpun)
 952                                 continue;
 953 
 954                         if (vecp->v_type != APIX_TYPE_MSI)
 955                                 (void) apix_set_cpu(vecp, cpun, &ret);
 956                         else
 957                                 (void) apix_grp_set_cpu(vecp, cpun, &ret);
 958                 }
 959         }
 960 
 961         lock_clear(&apix_lock);
 962 }
 963 
 964 /*
 965  * Allocate vector for IPI
 966  * type == -1 indicates it is an internal request. Do not change
 967  * resv_vector for these requests.
 968  */
 969 static int
 970 apix_get_ipivect(int ipl, int type)
 971 {
 972         uchar_t vector;
 973 
 974         if ((vector = apix_alloc_ipi(ipl)) > 0) {
 975                 if (type != -1)
 976                         apic_resv_vector[ipl] = vector;
 977                 return (vector);
 978         }
 979         apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
 980         return (-1);    /* shouldn't happen */
 981 }
 982 
 983 static int
 984 apix_get_clkvect(int ipl)
 985 {
 986         int vector;
 987 
 988         if ((vector = apix_get_ipivect(ipl, -1)) == -1)
 989                 return (-1);
 990 
 991         apic_clkvect = vector - APIC_BASE_VECT;
 992         APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n",
 993             apic_clkvect));
 994         return (vector);
 995 }
 996 
 997 static int
 998 apix_post_cpu_start()
 999 {
1000         int cpun;
1001         static int cpus_started = 1;
1002 
1003         /* We know this CPU + BSP  started successfully. */
1004         cpus_started++;
1005 
1006         /*
1007          * On BSP we would have enabled X2APIC, if supported by processor,
1008          * in acpi_probe(), but on AP we do it here.
1009          *
1010          * We enable X2APIC mode only if BSP is running in X2APIC & the
1011          * local APIC mode of the current CPU is MMIO (xAPIC).
1012          */
1013         if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1014             apic_local_mode() == LOCAL_APIC) {
1015                 apic_enable_x2apic();
1016         }
1017 
1018         /*
1019          * Switch back to x2apic IPI sending method for performance when target
1020          * CPU has entered x2apic mode.
1021          */
1022         if (apic_mode == LOCAL_X2APIC) {
1023                 apic_switch_ipi_callback(B_FALSE);
1024         }
1025 
1026         splx(ipltospl(LOCK_LEVEL));
1027         apix_init_intr();
1028 
1029         /*
1030          * since some systems don't enable the internal cache on the non-boot
1031          * cpus, so we have to enable them here
1032          */
1033         setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1034 
1035 #ifdef  DEBUG
1036         APIC_AV_PENDING_SET();
1037 #else
1038         if (apic_mode == LOCAL_APIC)
1039                 APIC_AV_PENDING_SET();
1040 #endif  /* DEBUG */
1041 
1042         /*
1043          * We may be booting, or resuming from suspend; aci_status will
1044          * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1045          * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1046          */
1047         cpun = psm_get_cpu_id();
1048         apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1049 
1050         apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1051 
1052         return (PSM_SUCCESS);
1053 }
1054 
1055 /*
1056  * If this module needs a periodic handler for the interrupt distribution, it
1057  * can be added here. The argument to the periodic handler is not currently
1058  * used, but is reserved for future.
1059  */
1060 static void
1061 apix_post_cyclic_setup(void *arg)
1062 {
1063         UNREFERENCED_1PARAMETER(arg);
1064 
1065         cyc_handler_t cyh;
1066         cyc_time_t cyt;
1067 
1068         /* cpu_lock is held */
1069         /* set up a periodic handler for intr redistribution */
1070 
1071         /*
1072          * In peridoc mode intr redistribution processing is done in
1073          * apic_intr_enter during clk intr processing
1074          */
1075         if (!apic_oneshot)
1076                 return;
1077 
1078         /*
1079          * Register a periodical handler for the redistribution processing.
1080          * Though we would generally prefer to use the DDI interface for
1081          * periodic handler invocation, ddi_periodic_add(9F), we are
1082          * unfortunately already holding cpu_lock, which ddi_periodic_add will
1083          * attempt to take for us.  Thus, we add our own cyclic directly:
1084          */
1085         cyh.cyh_func = (void (*)(void *))apix_redistribute_compute;
1086         cyh.cyh_arg = NULL;
1087         cyh.cyh_level = CY_LOW_LEVEL;
1088 
1089         cyt.cyt_when = 0;
1090         cyt.cyt_interval = apic_redistribute_sample_interval;
1091 
1092         apic_cyclic_id = cyclic_add(&cyh, &cyt);
1093 }
1094 
1095 /*
1096  * Called the first time we enable x2apic mode on this cpu.
1097  * Update some of the function pointers to use x2apic routines.
1098  */
1099 void
1100 x2apic_update_psm()
1101 {
1102         struct psm_ops *pops = &apix_ops;
1103 
1104         ASSERT(pops != NULL);
1105 
1106         /*
1107          * The pcplusmp module's version of x2apic_update_psm makes additional
1108          * changes that we do not have to make here. It needs to make those
1109          * changes because pcplusmp relies on the TPR register and the means of
1110          * addressing that changes when using the local apic versus the x2apic.
1111          * It's also worth noting that the apix driver specific function end up
1112          * being apix_foo as opposed to apic_foo and x2apic_foo.
1113          */
1114         pops->psm_send_ipi = x2apic_send_ipi;
1115 
1116         send_dirintf = pops->psm_send_ipi;
1117 
1118         apic_mode = LOCAL_X2APIC;
1119         apic_change_ops();
1120 }
1121 
1122 /*
1123  * This function provides external interface to the nexus for all
1124  * functionalities related to the new DDI interrupt framework.
1125  *
1126  * Input:
1127  * dip     - pointer to the dev_info structure of the requested device
1128  * hdlp    - pointer to the internal interrupt handle structure for the
1129  *           requested interrupt
1130  * intr_op - opcode for this call
1131  * result  - pointer to the integer that will hold the result to be
1132  *           passed back if return value is PSM_SUCCESS
1133  *
1134  * Output:
1135  * return value is either PSM_SUCCESS or PSM_FAILURE
1136  */
1137 static int
1138 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1139     psm_intr_op_t intr_op, int *result)
1140 {
1141         int             cap;
1142         apix_vector_t   *vecp, *newvecp;
1143         struct intrspec *ispec, intr_spec;
1144         processorid_t target;
1145 
1146         ispec = &intr_spec;
1147         ispec->intrspec_pri = hdlp->ih_pri;
1148         ispec->intrspec_vec = hdlp->ih_inum;
1149         ispec->intrspec_func = hdlp->ih_cb_func;
1150 
1151         switch (intr_op) {
1152         case PSM_INTR_OP_ALLOC_VECTORS:
1153                 switch (hdlp->ih_type) {
1154                 case DDI_INTR_TYPE_MSI:
1155                         /* allocate MSI vectors */
1156                         *result = apix_alloc_msi(dip, hdlp->ih_inum,
1157                             hdlp->ih_scratch1,
1158                             (int)(uintptr_t)hdlp->ih_scratch2);
1159                         break;
1160                 case DDI_INTR_TYPE_MSIX:
1161                         /* allocate MSI-X vectors */
1162                         *result = apix_alloc_msix(dip, hdlp->ih_inum,
1163                             hdlp->ih_scratch1,
1164                             (int)(uintptr_t)hdlp->ih_scratch2);
1165                         break;
1166                 case DDI_INTR_TYPE_FIXED:
1167                         /* allocate or share vector for fixed */
1168                         if ((ihdl_plat_t *)hdlp->ih_private == NULL) {
1169                                 return (PSM_FAILURE);
1170                         }
1171                         ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1172                         *result = apix_intx_alloc_vector(dip, hdlp->ih_inum,
1173                             ispec);
1174                         break;
1175                 default:
1176                         return (PSM_FAILURE);
1177                 }
1178                 break;
1179         case PSM_INTR_OP_FREE_VECTORS:
1180                 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
1181                     hdlp->ih_type);
1182                 break;
1183         case PSM_INTR_OP_XLATE_VECTOR:
1184                 /*
1185                  * Vectors are allocated by ALLOC and freed by FREE.
1186                  * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector).
1187                  */
1188                 *result = APIX_INVALID_VECT;
1189                 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1190                 if (vecp != NULL) {
1191                         *result = APIX_VIRTVECTOR(vecp->v_cpuid,
1192                             vecp->v_vector);
1193                         break;
1194                 }
1195 
1196                 /*
1197                  * No vector to device mapping exists. If this is FIXED type
1198                  * then check if this IRQ is already mapped for another device
1199                  * then return the vector number for it (i.e. shared IRQ case).
1200                  * Otherwise, return PSM_FAILURE.
1201                  */
1202                 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
1203                         vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum,
1204                             ispec);
1205                         *result = (vecp == NULL) ? APIX_INVALID_VECT :
1206                             APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector);
1207                 }
1208                 if (*result == APIX_INVALID_VECT)
1209                         return (PSM_FAILURE);
1210                 break;
1211         case PSM_INTR_OP_GET_PENDING:
1212                 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1213                 if (vecp == NULL)
1214                         return (PSM_FAILURE);
1215 
1216                 *result = apix_get_pending(vecp);
1217                 break;
1218         case PSM_INTR_OP_CLEAR_MASK:
1219                 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1220                         return (PSM_FAILURE);
1221 
1222                 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1223                 if (vecp == NULL)
1224                         return (PSM_FAILURE);
1225 
1226                 apix_intx_clear_mask(vecp->v_inum);
1227                 break;
1228         case PSM_INTR_OP_SET_MASK:
1229                 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1230                         return (PSM_FAILURE);
1231 
1232                 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1233                 if (vecp == NULL)
1234                         return (PSM_FAILURE);
1235 
1236                 apix_intx_set_mask(vecp->v_inum);
1237                 break;
1238         case PSM_INTR_OP_GET_SHARED:
1239                 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1240                         return (PSM_FAILURE);
1241 
1242                 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1243                 if (vecp == NULL)
1244                         return (PSM_FAILURE);
1245 
1246                 *result = apix_intx_get_shared(vecp->v_inum);
1247                 break;
1248         case PSM_INTR_OP_SET_PRI:
1249                 /*
1250                  * Called prior to adding the interrupt handler or when
1251                  * an interrupt handler is unassigned.
1252                  */
1253                 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1254                         return (PSM_SUCCESS);
1255 
1256                 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL)
1257                         return (PSM_FAILURE);
1258 
1259                 break;
1260         case PSM_INTR_OP_SET_CPU:
1261         case PSM_INTR_OP_GRP_SET_CPU:
1262                 /*
1263                  * The interrupt handle given here has been allocated
1264                  * specifically for this command, and ih_private carries
1265                  * a CPU value.
1266                  */
1267                 *result = EINVAL;
1268                 target = (int)(intptr_t)hdlp->ih_private;
1269                 if (!apic_cpu_in_range(target)) {
1270                         DDI_INTR_IMPLDBG((CE_WARN,
1271                             "[grp_]set_cpu: cpu out of range: %d\n", target));
1272                         return (PSM_FAILURE);
1273                 }
1274 
1275                 lock_set(&apix_lock);
1276 
1277                 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags);
1278                 if (!IS_VECT_ENABLED(vecp)) {
1279                         DDI_INTR_IMPLDBG((CE_WARN,
1280                             "[grp]_set_cpu: invalid vector 0x%x\n",
1281                             hdlp->ih_vector));
1282                         lock_clear(&apix_lock);
1283                         return (PSM_FAILURE);
1284                 }
1285 
1286                 *result = 0;
1287 
1288                 if (intr_op == PSM_INTR_OP_SET_CPU)
1289                         newvecp = apix_set_cpu(vecp, target, result);
1290                 else
1291                         newvecp = apix_grp_set_cpu(vecp, target, result);
1292 
1293                 lock_clear(&apix_lock);
1294 
1295                 if (newvecp == NULL) {
1296                         *result = EIO;
1297                         return (PSM_FAILURE);
1298                 }
1299                 newvecp->v_bound_cpuid = target;
1300                 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid,
1301                     newvecp->v_vector);
1302                 break;
1303 
1304         case PSM_INTR_OP_GET_INTR:
1305                 /*
1306                  * The interrupt handle given here has been allocated
1307                  * specifically for this command, and ih_private carries
1308                  * a pointer to a apic_get_intr_t.
1309                  */
1310                 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS)
1311                         return (PSM_FAILURE);
1312                 break;
1313 
1314         case PSM_INTR_OP_CHECK_MSI:
1315                 /*
1316                  * Check MSI/X is supported or not at APIC level and
1317                  * masked off the MSI/X bits in hdlp->ih_type if not
1318                  * supported before return.  If MSI/X is supported,
1319                  * leave the ih_type unchanged and return.
1320                  *
1321                  * hdlp->ih_type passed in from the nexus has all the
1322                  * interrupt types supported by the device.
1323                  */
1324                 if (apic_support_msi == 0) {    /* uninitialized */
1325                         /*
1326                          * if apic_support_msi is not set, call
1327                          * apic_check_msi_support() to check whether msi
1328                          * is supported first
1329                          */
1330                         if (apic_check_msi_support() == PSM_SUCCESS)
1331                                 apic_support_msi = 1;   /* supported */
1332                         else
1333                                 apic_support_msi = -1;  /* not-supported */
1334                 }
1335                 if (apic_support_msi == 1) {
1336                         if (apic_msix_enable)
1337                                 *result = hdlp->ih_type;
1338                         else
1339                                 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
1340                 } else
1341                         *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1342                             DDI_INTR_TYPE_MSIX);
1343                 break;
1344         case PSM_INTR_OP_GET_CAP:
1345                 cap = DDI_INTR_FLAG_PENDING;
1346                 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1347                         cap |= DDI_INTR_FLAG_MASKABLE;
1348                 *result = cap;
1349                 break;
1350         case PSM_INTR_OP_APIC_TYPE:
1351                 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type =
1352                     apix_get_apic_type();
1353                 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr =
1354                     APIX_IPI_MIN;
1355                 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu =
1356                     apic_nproc;
1357                 hdlp->ih_ver = apic_get_apic_version();
1358                 break;
1359         case PSM_INTR_OP_SET_CAP:
1360         default:
1361                 return (PSM_FAILURE);
1362         }
1363 
1364         return (PSM_SUCCESS);
1365 }
1366 
1367 static void
1368 apix_cleanup_busy(void)
1369 {
1370         int i, j;
1371         apix_vector_t *vecp;
1372 
1373         for (i = 0; i < apic_nproc; i++) {
1374                 if (!apic_cpu_in_range(i))
1375                         continue;
1376                 apic_cpus[i].aci_busy = 0;
1377                 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) {
1378                         if ((vecp = xv_vector(i, j)) != NULL)
1379                                 vecp->v_busy = 0;
1380                 }
1381         }
1382 }
1383 
1384 static void
1385 apix_redistribute_compute(void)
1386 {
1387         int     i, j, max_busy;
1388 
1389         if (!apic_enable_dynamic_migration)
1390                 return;
1391 
1392         if (++apic_nticks == apic_sample_factor_redistribution) {
1393                 /*
1394                  * Time to call apic_intr_redistribute().
1395                  * reset apic_nticks. This will cause max_busy
1396                  * to be calculated below and if it is more than
1397                  * apic_int_busy, we will do the whole thing
1398                  */
1399                 apic_nticks = 0;
1400         }
1401         max_busy = 0;
1402         for (i = 0; i < apic_nproc; i++) {
1403                 if (!apic_cpu_in_range(i))
1404                         continue;
1405                 /*
1406                  * Check if curipl is non zero & if ISR is in
1407                  * progress
1408                  */
1409                 if (((j = apic_cpus[i].aci_curipl) != 0) &&
1410                     (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1411 
1412                         int     vect;
1413                         apic_cpus[i].aci_busy++;
1414                         vect = apic_cpus[i].aci_current[j];
1415                         apixs[i]->x_vectbl[vect]->v_busy++;
1416                 }
1417 
1418                 if (!apic_nticks &&
1419                     (apic_cpus[i].aci_busy > max_busy))
1420                         max_busy = apic_cpus[i].aci_busy;
1421         }
1422         if (!apic_nticks) {
1423                 if (max_busy > apic_int_busy_mark) {
1424                 /*
1425                  * We could make the following check be
1426                  * skipped > 1 in which case, we get a
1427                  * redistribution at half the busy mark (due to
1428                  * double interval). Need to be able to collect
1429                  * more empirical data to decide if that is a
1430                  * good strategy. Punt for now.
1431                  */
1432                         apix_cleanup_busy();
1433                         apic_skipped_redistribute = 0;
1434                 } else
1435                         apic_skipped_redistribute++;
1436         }
1437 }
1438 
1439 /*
1440  * intr_ops() service routines
1441  */
1442 
1443 static int
1444 apix_get_pending(apix_vector_t *vecp)
1445 {
1446         int bit, index, irr, pending;
1447 
1448         /* need to get on the bound cpu */
1449         mutex_enter(&cpu_lock);
1450         affinity_set(vecp->v_cpuid);
1451 
1452         index = vecp->v_vector / 32;
1453         bit = vecp->v_vector % 32;
1454         irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
1455 
1456         affinity_clear();
1457         mutex_exit(&cpu_lock);
1458 
1459         pending = (irr & (1 << bit)) ? 1 : 0;
1460         if (!pending && vecp->v_type == APIX_TYPE_FIXED)
1461                 pending = apix_intx_get_pending(vecp->v_inum);
1462 
1463         return (pending);
1464 }
1465 
1466 static apix_vector_t *
1467 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags)
1468 {
1469         apix_vector_t *vecp;
1470         processorid_t cpuid;
1471         int32_t virt_vec = 0;
1472 
1473         switch (flags & PSMGI_INTRBY_FLAGS) {
1474         case PSMGI_INTRBY_IRQ:
1475                 return (apix_intx_get_vector(hdlp->ih_vector));
1476         case PSMGI_INTRBY_VEC:
1477                 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec;
1478 
1479                 cpuid = APIX_VIRTVEC_CPU(virt_vec);
1480                 if (!apic_cpu_in_range(cpuid))
1481                         return (NULL);
1482 
1483                 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec));
1484                 break;
1485         case PSMGI_INTRBY_DEFAULT:
1486                 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum,
1487                     hdlp->ih_type);
1488                 break;
1489         default:
1490                 return (NULL);
1491         }
1492 
1493         return (vecp);
1494 }
1495 
1496 static int
1497 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp,
1498     apic_get_intr_t *intr_params_p)
1499 {
1500         apix_vector_t *vecp;
1501         struct autovec *av_dev;
1502         int i;
1503 
1504         vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags);
1505         if (IS_VECT_FREE(vecp)) {
1506                 intr_params_p->avgi_num_devs = 0;
1507                 intr_params_p->avgi_cpu_id = 0;
1508                 intr_params_p->avgi_req_flags = 0;
1509                 return (PSM_SUCCESS);
1510         }
1511 
1512         if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
1513                 intr_params_p->avgi_cpu_id = vecp->v_cpuid;
1514 
1515                 /* Return user bound info for intrd. */
1516                 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
1517                         intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
1518                         intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
1519                 }
1520         }
1521 
1522         if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
1523                 intr_params_p->avgi_vector = vecp->v_vector;
1524 
1525         if (intr_params_p->avgi_req_flags &
1526             (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
1527                 /* Get number of devices from apic_irq table shared field. */
1528                 intr_params_p->avgi_num_devs = vecp->v_share;
1529 
1530         if (intr_params_p->avgi_req_flags &  PSMGI_REQ_GET_DEVS) {
1531 
1532                 intr_params_p->avgi_req_flags  |= PSMGI_REQ_NUM_DEVS;
1533 
1534                 /* Some devices have NULL dip.  Don't count these. */
1535                 if (intr_params_p->avgi_num_devs > 0) {
1536                         for (i = 0, av_dev = vecp->v_autovect; av_dev;
1537                             av_dev = av_dev->av_link) {
1538                                 if (av_dev->av_vector && av_dev->av_dip)
1539                                         i++;
1540                         }
1541                         intr_params_p->avgi_num_devs =
1542                             (uint8_t)MIN(intr_params_p->avgi_num_devs, i);
1543                 }
1544 
1545                 /* There are no viable dips to return. */
1546                 if (intr_params_p->avgi_num_devs == 0) {
1547                         intr_params_p->avgi_dip_list = NULL;
1548 
1549                 } else {        /* Return list of dips */
1550 
1551                         /* Allocate space in array for that number of devs. */
1552                         intr_params_p->avgi_dip_list = kmem_zalloc(
1553                             intr_params_p->avgi_num_devs *
1554                             sizeof (dev_info_t *),
1555                             KM_NOSLEEP);
1556                         if (intr_params_p->avgi_dip_list == NULL) {
1557                                 DDI_INTR_IMPLDBG((CE_WARN,
1558                                     "apix_get_vector_intr_info: no memory"));
1559                                 return (PSM_FAILURE);
1560                         }
1561 
1562                         /*
1563                          * Loop through the device list of the autovec table
1564                          * filling in the dip array.
1565                          *
1566                          * Note that the autovect table may have some special
1567                          * entries which contain NULL dips.  These will be
1568                          * ignored.
1569                          */
1570                         for (i = 0, av_dev = vecp->v_autovect; av_dev;
1571                             av_dev = av_dev->av_link) {
1572                                 if (av_dev->av_vector && av_dev->av_dip)
1573                                         intr_params_p->avgi_dip_list[i++] =
1574                                             av_dev->av_dip;
1575                         }
1576                 }
1577         }
1578 
1579         return (PSM_SUCCESS);
1580 }
1581 
1582 static char *
1583 apix_get_apic_type(void)
1584 {
1585         return (apix_psm_info.p_mach_idstring);
1586 }
1587 
1588 apix_vector_t *
1589 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1590 {
1591         apix_vector_t *newp = NULL;
1592         dev_info_t *dip;
1593         int inum, cap_ptr;
1594         ddi_acc_handle_t handle;
1595         ddi_intr_msix_t *msix_p = NULL;
1596         ushort_t msix_ctrl;
1597         uintptr_t off;
1598         uint32_t mask;
1599 
1600         ASSERT(LOCK_HELD(&apix_lock));
1601         *result = ENXIO;
1602 
1603         /* Fail if this is an MSI intr and is part of a group. */
1604         if (vecp->v_type == APIX_TYPE_MSI) {
1605                 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1)
1606                         return (NULL);
1607                 else
1608                         return (apix_grp_set_cpu(vecp, new_cpu, result));
1609         }
1610 
1611         /*
1612          * Mask MSI-X. It's unmasked when MSI-X gets enabled.
1613          */
1614         if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) {
1615                 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1616                         return (NULL);
1617                 inum = vecp->v_devp->dv_inum;
1618 
1619                 handle = i_ddi_get_pci_config_handle(dip);
1620                 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1621                 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
1622                 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) {
1623                         /*
1624                          * Function is not masked, then mask "inum"th
1625                          * entry in the MSI-X table
1626                          */
1627                         msix_p = i_ddi_get_msix(dip);
1628                         off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
1629                             PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
1630                         mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
1631                         ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off,
1632                             mask | 1);
1633                 }
1634         }
1635 
1636         *result = 0;
1637         if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL)
1638                 *result = EIO;
1639 
1640         /* Restore mask bit */
1641         if (msix_p != NULL)
1642                 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask);
1643 
1644         return (newp);
1645 }
1646 
1647 /*
1648  * Set cpu for MSIs
1649  */
1650 apix_vector_t *
1651 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1652 {
1653         apix_vector_t *newp, *vp;
1654         uint32_t orig_cpu = vecp->v_cpuid;
1655         int orig_vect = vecp->v_vector;
1656         int i, num_vectors, cap_ptr, msi_mask_off;
1657         uint32_t msi_pvm;
1658         ushort_t msi_ctrl;
1659         ddi_acc_handle_t handle;
1660         dev_info_t *dip;
1661 
1662         APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x,"
1663             " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu));
1664 
1665         ASSERT(LOCK_HELD(&apix_lock));
1666 
1667         *result = ENXIO;
1668 
1669         if (vecp->v_type != APIX_TYPE_MSI) {
1670                 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n"));
1671                 return (NULL);
1672         }
1673 
1674         if ((dip = APIX_GET_DIP(vecp)) == NULL)
1675                 return (NULL);
1676 
1677         num_vectors = i_ddi_intr_get_current_nintrs(dip);
1678         if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) {
1679                 APIC_VERBOSE(INTR, (CE_WARN,
1680                     "set_grp: base vec not part of a grp or not aligned: "
1681                     "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors));
1682                 return (NULL);
1683         }
1684 
1685         if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type))
1686                 return (NULL);
1687 
1688         *result = EIO;
1689         for (i = 1; i < num_vectors; i++) {
1690                 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL)
1691                         return (NULL);
1692 #ifdef DEBUG
1693                 /*
1694                  * Sanity check: CPU and dip is the same for all entries.
1695                  * May be called when first msi to be enabled, at this time
1696                  * add_avintr() is not called for other msi
1697                  */
1698                 if ((vp->v_share != 0) &&
1699                     ((APIX_GET_DIP(vp) != dip) ||
1700                     (vp->v_cpuid != vecp->v_cpuid))) {
1701                         APIC_VERBOSE(INTR, (CE_WARN,
1702                             "set_grp: cpu or dip for vec 0x%x difft than for "
1703                             "vec 0x%x\n", orig_vect, orig_vect + i));
1704                         APIC_VERBOSE(INTR, (CE_WARN,
1705                             "  cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
1706                             vp->v_cpuid, (void *)dip,
1707                             (void *)APIX_GET_DIP(vp)));
1708                         return (NULL);
1709                 }
1710 #endif /* DEBUG */
1711         }
1712 
1713         cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1714         handle = i_ddi_get_pci_config_handle(dip);
1715         msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1716 
1717         /* MSI Per vector masking is supported. */
1718         if (msi_ctrl & PCI_MSI_PVM_MASK) {
1719                 if (msi_ctrl &  PCI_MSI_64BIT_MASK)
1720                         msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
1721                 else
1722                         msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
1723                 msi_pvm = pci_config_get32(handle, msi_mask_off);
1724                 pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
1725                 APIC_VERBOSE(INTR, (CE_CONT,
1726                     "set_grp: pvm supported.  Mask set to 0x%x\n",
1727                     pci_config_get32(handle, msi_mask_off)));
1728         }
1729 
1730         if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL)
1731                 *result = 0;
1732 
1733         /* Reenable vectors if per vector masking is supported. */
1734         if (msi_ctrl & PCI_MSI_PVM_MASK) {
1735                 pci_config_put32(handle, msi_mask_off, msi_pvm);
1736                 APIC_VERBOSE(INTR, (CE_CONT,
1737                     "set_grp: pvm supported.  Mask restored to 0x%x\n",
1738                     pci_config_get32(handle, msi_mask_off)));
1739         }
1740 
1741         return (newp);
1742 }
1743 
1744 void
1745 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector)
1746 {
1747         apic_irq_t *irqp;
1748 
1749         mutex_enter(&airq_mutex);
1750         irqp = apic_irq_table[irqno];
1751         irqp->airq_cpu = cpuid;
1752         irqp->airq_vector = vector;
1753         apic_record_rdt_entry(irqp, irqno);
1754         mutex_exit(&airq_mutex);
1755 }
1756 
1757 apix_vector_t *
1758 apix_intx_get_vector(int irqno)
1759 {
1760         apic_irq_t *irqp;
1761         uint32_t cpuid;
1762         uchar_t vector;
1763 
1764         mutex_enter(&airq_mutex);
1765         irqp = apic_irq_table[irqno & 0xff];
1766         if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
1767                 mutex_exit(&airq_mutex);
1768                 return (NULL);
1769         }
1770         cpuid = irqp->airq_cpu;
1771         vector = irqp->airq_vector;
1772         mutex_exit(&airq_mutex);
1773 
1774         return (xv_vector(cpuid, vector));
1775 }
1776 
1777 /*
1778  * Must called with interrupts disabled and apic_ioapic_lock held
1779  */
1780 void
1781 apix_intx_enable(int irqno)
1782 {
1783         uchar_t ioapicindex, intin;
1784         apic_irq_t *irqp = apic_irq_table[irqno];
1785         ioapic_rdt_t irdt;
1786         apic_cpus_info_t *cpu_infop;
1787         apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector);
1788 
1789         ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1790 
1791         ioapicindex = irqp->airq_ioapicindex;
1792         intin = irqp->airq_intin_no;
1793         cpu_infop =  &apic_cpus[irqp->airq_cpu];
1794 
1795         irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry;
1796         irdt.ir_hi = cpu_infop->aci_local_id;
1797 
1798         apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL,
1799             vecp->v_type, 1, ioapicindex);
1800         apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private,
1801             (void *)&irdt, vecp->v_type, 1);
1802         apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt);
1803 
1804         /* write RDT entry high dword - destination */
1805         WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin,
1806             irdt.ir_hi);
1807 
1808         /* Write the vector, trigger, and polarity portion of the RDT */
1809         WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo);
1810 
1811         vecp->v_state = APIX_STATE_ENABLED;
1812 
1813         APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x"
1814             " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n",
1815             ioapicindex, intin, irdt.ir_lo, irdt.ir_hi));
1816 }
1817 
1818 /*
1819  * Must called with interrupts disabled and apic_ioapic_lock held
1820  */
1821 void
1822 apix_intx_disable(int irqno)
1823 {
1824         apic_irq_t *irqp = apic_irq_table[irqno];
1825         int ioapicindex, intin;
1826 
1827         ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1828         /*
1829          * The assumption here is that this is safe, even for
1830          * systems with IOAPICs that suffer from the hardware
1831          * erratum because all devices have been quiesced before
1832          * they unregister their interrupt handlers.  If that
1833          * assumption turns out to be false, this mask operation
1834          * can induce the same erratum result we're trying to
1835          * avoid.
1836          */
1837         ioapicindex = irqp->airq_ioapicindex;
1838         intin = irqp->airq_intin_no;
1839         ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK);
1840 
1841         APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x"
1842             " intin 0x%x\n", ioapicindex, intin));
1843 }
1844 
1845 void
1846 apix_intx_free(int irqno)
1847 {
1848         apic_irq_t *irqp;
1849 
1850         mutex_enter(&airq_mutex);
1851         irqp = apic_irq_table[irqno];
1852 
1853         if (IS_IRQ_FREE(irqp)) {
1854                 mutex_exit(&airq_mutex);
1855                 return;
1856         }
1857 
1858         irqp->airq_mps_intr_index = FREE_INDEX;
1859         irqp->airq_cpu = IRQ_UNINIT;
1860         irqp->airq_vector = APIX_INVALID_VECT;
1861         mutex_exit(&airq_mutex);
1862 }
1863 
1864 #ifdef DEBUG
1865 int apix_intr_deliver_timeouts = 0;
1866 int apix_intr_rirr_timeouts = 0;
1867 int apix_intr_rirr_reset_failure = 0;
1868 #endif
1869 int apix_max_reps_irr_pending = 10;
1870 
1871 #define GET_RDT_BITS(ioapic, intin, bits)       \
1872         (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits))
1873 #define APIX_CHECK_IRR_DELAY    drv_usectohz(5000)
1874 
1875 int
1876 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector)
1877 {
1878         apic_irq_t *irqp = apic_irq_table[irqno];
1879         ulong_t iflag;
1880         int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked;
1881 
1882         ASSERT(irqp != NULL);
1883 
1884         iflag = intr_clear();
1885         lock_set(&apic_ioapic_lock);
1886 
1887         ioapic_ix = irqp->airq_ioapicindex;
1888         intin_no = irqp->airq_intin_no;
1889         level = apic_level_intr[irqno];
1890 
1891         /*
1892          * Wait for the delivery status bit to be cleared. This should
1893          * be a very small amount of time.
1894          */
1895         repeats = 0;
1896         do {
1897                 repeats++;
1898 
1899                 for (waited = 0; waited < apic_max_reps_clear_pending;
1900                     waited++) {
1901                         if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0)
1902                                 break;
1903                 }
1904                 if (!level)
1905                         break;
1906 
1907                 /*
1908                  * Mask the RDT entry for level-triggered interrupts.
1909                  */
1910                 irqp->airq_rdt_entry |= AV_MASK;
1911                 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1912                     intin_no);
1913                 if ((masked = (rdt_entry & AV_MASK)) == 0) {
1914                         /* Mask it */
1915                         WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1916                             AV_MASK | rdt_entry);
1917                 }
1918 
1919                 /*
1920                  * If there was a race and an interrupt was injected
1921                  * just before we masked, check for that case here.
1922                  * Then, unmask the RDT entry and try again.  If we're
1923                  * on our last try, don't unmask (because we want the
1924                  * RDT entry to remain masked for the rest of the
1925                  * function).
1926                  */
1927                 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1928                     intin_no);
1929                 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) &&
1930                     (repeats < apic_max_reps_clear_pending)) {
1931                         /* Unmask it */
1932                         WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1933                             intin_no, rdt_entry & ~AV_MASK);
1934                         irqp->airq_rdt_entry &= ~AV_MASK;
1935                 }
1936         } while ((rdt_entry & AV_PENDING) &&
1937             (repeats < apic_max_reps_clear_pending));
1938 
1939 #ifdef DEBUG
1940         if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0)
1941                 apix_intr_deliver_timeouts++;
1942 #endif
1943 
1944         if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method))
1945                 goto done;
1946 
1947         /*
1948          * wait for remote IRR to be cleared for level-triggered
1949          * interrupts
1950          */
1951         repeats = 0;
1952         do {
1953                 repeats++;
1954 
1955                 for (waited = 0; waited < apic_max_reps_clear_pending;
1956                     waited++) {
1957                         if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR)
1958                             == 0)
1959                                 break;
1960                 }
1961 
1962                 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1963                         lock_clear(&apic_ioapic_lock);
1964                         intr_restore(iflag);
1965 
1966                         delay(APIX_CHECK_IRR_DELAY);
1967 
1968                         iflag = intr_clear();
1969                         lock_set(&apic_ioapic_lock);
1970                 }
1971         } while (repeats < apix_max_reps_irr_pending);
1972 
1973         if (repeats >= apix_max_reps_irr_pending) {
1974 #ifdef DEBUG
1975                 apix_intr_rirr_timeouts++;
1976 #endif
1977 
1978                 /*
1979                  * If we waited and the Remote IRR bit is still not cleared,
1980                  * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1981                  * times for this interrupt, try the last-ditch workaround:
1982                  */
1983                 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1984                         /*
1985                          * Trying to clear the bit through normal
1986                          * channels has failed.  So as a last-ditch
1987                          * effort, try to set the trigger mode to
1988                          * edge, then to level.  This has been
1989                          * observed to work on many systems.
1990                          */
1991                         WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1992                             intin_no,
1993                             READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1994                             intin_no) & ~AV_LEVEL);
1995                         WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1996                             intin_no,
1997                             READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1998                             intin_no) | AV_LEVEL);
1999                 }
2000 
2001                 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
2002 #ifdef DEBUG
2003                         apix_intr_rirr_reset_failure++;
2004 #endif
2005                         lock_clear(&apic_ioapic_lock);
2006                         intr_restore(iflag);
2007                         prom_printf("apix: Remote IRR still "
2008                             "not clear for IOAPIC %d intin %d.\n"
2009                             "\tInterrupts to this pin may cease "
2010                             "functioning.\n", ioapic_ix, intin_no);
2011                         return (1);     /* return failure */
2012                 }
2013         }
2014 
2015 done:
2016         /* change apic_irq_table */
2017         lock_clear(&apic_ioapic_lock);
2018         intr_restore(iflag);
2019         apix_intx_set_vector(irqno, cpuid, vector);
2020         iflag = intr_clear();
2021         lock_set(&apic_ioapic_lock);
2022 
2023         /* reprogramme IO-APIC RDT entry */
2024         apix_intx_enable(irqno);
2025 
2026         lock_clear(&apic_ioapic_lock);
2027         intr_restore(iflag);
2028 
2029         return (0);
2030 }
2031 
2032 static int
2033 apix_intx_get_pending(int irqno)
2034 {
2035         apic_irq_t *irqp;
2036         int intin, ioapicindex, pending;
2037         ulong_t iflag;
2038 
2039         mutex_enter(&airq_mutex);
2040         irqp = apic_irq_table[irqno];
2041         if (IS_IRQ_FREE(irqp)) {
2042                 mutex_exit(&airq_mutex);
2043                 return (0);
2044         }
2045 
2046         /* check IO-APIC delivery status */
2047         intin = irqp->airq_intin_no;
2048         ioapicindex = irqp->airq_ioapicindex;
2049         mutex_exit(&airq_mutex);
2050 
2051         iflag = intr_clear();
2052         lock_set(&apic_ioapic_lock);
2053 
2054         pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) &
2055             AV_PENDING) ? 1 : 0;
2056 
2057         lock_clear(&apic_ioapic_lock);
2058         intr_restore(iflag);
2059 
2060         return (pending);
2061 }
2062 
2063 /*
2064  * This function will mask the interrupt on the I/O APIC
2065  */
2066 static void
2067 apix_intx_set_mask(int irqno)
2068 {
2069         int intin, ioapixindex, rdt_entry;
2070         ulong_t iflag;
2071         apic_irq_t *irqp;
2072 
2073         mutex_enter(&airq_mutex);
2074         irqp = apic_irq_table[irqno];
2075 
2076         ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2077 
2078         intin = irqp->airq_intin_no;
2079         ioapixindex = irqp->airq_ioapicindex;
2080         mutex_exit(&airq_mutex);
2081 
2082         iflag = intr_clear();
2083         lock_set(&apic_ioapic_lock);
2084 
2085         rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2086 
2087         /* clear mask */
2088         WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2089             (AV_MASK | rdt_entry));
2090 
2091         lock_clear(&apic_ioapic_lock);
2092         intr_restore(iflag);
2093 }
2094 
2095 /*
2096  * This function will clear the mask for the interrupt on the I/O APIC
2097  */
2098 static void
2099 apix_intx_clear_mask(int irqno)
2100 {
2101         int intin, ioapixindex, rdt_entry;
2102         ulong_t iflag;
2103         apic_irq_t *irqp;
2104 
2105         mutex_enter(&airq_mutex);
2106         irqp = apic_irq_table[irqno];
2107 
2108         ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2109 
2110         intin = irqp->airq_intin_no;
2111         ioapixindex = irqp->airq_ioapicindex;
2112         mutex_exit(&airq_mutex);
2113 
2114         iflag = intr_clear();
2115         lock_set(&apic_ioapic_lock);
2116 
2117         rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2118 
2119         /* clear mask */
2120         WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2121             ((~AV_MASK) & rdt_entry));
2122 
2123         lock_clear(&apic_ioapic_lock);
2124         intr_restore(iflag);
2125 }
2126 
2127 /*
2128  * For level-triggered interrupt, mask the IRQ line. Mask means
2129  * new interrupts will not be delivered. The interrupt already
2130  * accepted by a local APIC is not affected
2131  */
2132 void
2133 apix_level_intr_pre_eoi(int irq)
2134 {
2135         apic_irq_t *irqp = apic_irq_table[irq];
2136         int apic_ix, intin_ix;
2137 
2138         if (irqp == NULL)
2139                 return;
2140 
2141         ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL);
2142 
2143         lock_set(&apic_ioapic_lock);
2144 
2145         intin_ix = irqp->airq_intin_no;
2146         apic_ix = irqp->airq_ioapicindex;
2147 
2148         if (irqp->airq_cpu != CPU->cpu_id) {
2149                 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method))
2150                         ioapic_write_eoi(apic_ix, irqp->airq_vector);
2151                 lock_clear(&apic_ioapic_lock);
2152                 return;
2153         }
2154 
2155         if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) {
2156                 /*
2157                  * This is a IOxAPIC and there is EOI register:
2158                  *      Change the vector to reserved unused vector, so that
2159                  *      the EOI from Local APIC won't clear the Remote IRR for
2160                  *      this level trigger interrupt. Instead, we'll manually
2161                  *      clear it in apix_post_hardint() after ISR handling.
2162                  */
2163                 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2164                     (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR);
2165         } else {
2166                 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2167                     AV_MASK | irqp->airq_rdt_entry);
2168         }
2169 
2170         lock_clear(&apic_ioapic_lock);
2171 }
2172 
2173 /*
2174  * For level-triggered interrupt, unmask the IRQ line
2175  * or restore the original vector number.
2176  */
2177 void
2178 apix_level_intr_post_dispatch(int irq)
2179 {
2180         apic_irq_t *irqp = apic_irq_table[irq];
2181         int apic_ix, intin_ix;
2182 
2183         if (irqp == NULL)
2184                 return;
2185 
2186         lock_set(&apic_ioapic_lock);
2187 
2188         intin_ix = irqp->airq_intin_no;
2189         apic_ix = irqp->airq_ioapicindex;
2190 
2191         if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) {
2192                 /*
2193                  * Already sent EOI back to Local APIC.
2194                  * Send EOI to IO-APIC
2195                  */
2196                 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2197         } else {
2198                 /* clear the mask or restore the vector */
2199                 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2200                     irqp->airq_rdt_entry);
2201 
2202                 /* send EOI to IOxAPIC */
2203                 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC)
2204                         ioapic_write_eoi(apic_ix, irqp->airq_vector);
2205         }
2206 
2207         lock_clear(&apic_ioapic_lock);
2208 }
2209 
2210 static int
2211 apix_intx_get_shared(int irqno)
2212 {
2213         apic_irq_t *irqp;
2214         int share;
2215 
2216         mutex_enter(&airq_mutex);
2217         irqp = apic_irq_table[irqno];
2218         if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
2219                 mutex_exit(&airq_mutex);
2220                 return (0);
2221         }
2222         share = irqp->airq_share;
2223         mutex_exit(&airq_mutex);
2224 
2225         return (share);
2226 }
2227 
2228 static void
2229 apix_intx_set_shared(int irqno, int delta)
2230 {
2231         apic_irq_t *irqp;
2232 
2233         mutex_enter(&airq_mutex);
2234         irqp = apic_irq_table[irqno];
2235         if (IS_IRQ_FREE(irqp)) {
2236                 mutex_exit(&airq_mutex);
2237                 return;
2238         }
2239         irqp->airq_share += delta;
2240         mutex_exit(&airq_mutex);
2241 }
2242 
2243 /*
2244  * Setup IRQ table. Return IRQ no or -1 on failure
2245  */
2246 static int
2247 apix_intx_setup(dev_info_t *dip, int inum, int irqno,
2248     struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp)
2249 {
2250         int origirq = ispec->intrspec_vec;
2251         int newirq;
2252         short intr_index;
2253         uchar_t ipin, ioapic, ioapicindex;
2254         apic_irq_t *irqp;
2255 
2256         UNREFERENCED_1PARAMETER(inum);
2257 
2258         if (intrp != NULL) {
2259                 intr_index = (short)(intrp - apic_io_intrp);
2260                 ioapic = intrp->intr_destid;
2261                 ipin = intrp->intr_destintin;
2262 
2263                 /* Find ioapicindex. If destid was ALL, we will exit with 0. */
2264                 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
2265                         if (apic_io_id[ioapicindex] == ioapic)
2266                                 break;
2267                 ASSERT((ioapic == apic_io_id[ioapicindex]) ||
2268                     (ioapic == INTR_ALL_APIC));
2269 
2270                 /* check whether this intin# has been used by another irqno */
2271                 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1)
2272                         return (newirq);
2273 
2274         } else if (iflagp != NULL) {    /* ACPI */
2275                 intr_index = ACPI_INDEX;
2276                 ioapicindex = acpi_find_ioapic(irqno);
2277                 ASSERT(ioapicindex != 0xFF);
2278                 ioapic = apic_io_id[ioapicindex];
2279                 ipin = irqno - apic_io_vectbase[ioapicindex];
2280 
2281                 if (apic_irq_table[irqno] &&
2282                     apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
2283                         ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
2284                             apic_irq_table[irqno]->airq_ioapicindex ==
2285                             ioapicindex);
2286                         return (irqno);
2287                 }
2288 
2289         } else {        /* default configuration */
2290                 intr_index = DEFAULT_INDEX;
2291                 ioapicindex = 0;
2292                 ioapic = apic_io_id[ioapicindex];
2293                 ipin = (uchar_t)irqno;
2294         }
2295 
2296         /* allocate a new IRQ no */
2297         if ((irqp = apic_irq_table[irqno]) == NULL) {
2298                 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
2299                 apic_irq_table[irqno] = irqp;
2300         } else {
2301                 if (irqp->airq_mps_intr_index != FREE_INDEX) {
2302                         newirq = apic_allocate_irq(apic_first_avail_irq);
2303                         if (newirq == -1) {
2304                                 return (-1);
2305                         }
2306                         irqno = newirq;
2307                         irqp = apic_irq_table[irqno];
2308                         ASSERT(irqp != NULL);
2309                 }
2310         }
2311         apic_max_device_irq = max(irqno, apic_max_device_irq);
2312         apic_min_device_irq = min(irqno, apic_min_device_irq);
2313 
2314         irqp->airq_mps_intr_index = intr_index;
2315         irqp->airq_ioapicindex = ioapicindex;
2316         irqp->airq_intin_no = ipin;
2317         irqp->airq_dip = dip;
2318         irqp->airq_origirq = (uchar_t)origirq;
2319         if (iflagp != NULL)
2320                 irqp->airq_iflag = *iflagp;
2321         irqp->airq_cpu = IRQ_UNINIT;
2322         irqp->airq_vector = 0;
2323 
2324         return (irqno);
2325 }
2326 
2327 /*
2328  * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error
2329  */
2330 static int
2331 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype,
2332     struct intrspec *ispec)
2333 {
2334         int irqno = ispec->intrspec_vec;
2335         int newirq, i;
2336         iflag_t intr_flag;
2337         ACPI_SUBTABLE_HEADER    *hp;
2338         ACPI_MADT_INTERRUPT_OVERRIDE *isop;
2339         struct apic_io_intr *intrp;
2340 
2341         if (!apic_enable_acpi || apic_use_acpi_madt_only) {
2342                 int busid;
2343 
2344                 if (bustype == 0)
2345                         bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
2346 
2347                 /* loop checking BUS_ISA/BUS_EISA */
2348                 for (i = 0; i < 2; i++) {
2349                         if (((busid = apic_find_bus_id(bustype)) != -1) &&
2350                             ((intrp = apic_find_io_intr_w_busid(irqno, busid))
2351                             != NULL)) {
2352                                 return (apix_intx_setup(dip, inum, irqno,
2353                                     intrp, ispec, NULL));
2354                         }
2355                         bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
2356                 }
2357 
2358                 /* fall back to default configuration */
2359                 return (-1);
2360         }
2361 
2362         /* search iso entries first */
2363         if (acpi_iso_cnt != 0) {
2364                 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
2365                 i = 0;
2366                 while (i < acpi_iso_cnt) {
2367                         if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
2368                                 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
2369                                 if (isop->Bus == 0 &&
2370                                     isop->SourceIrq == irqno) {
2371                                         newirq = isop->GlobalIrq;
2372                                         intr_flag.intr_po = isop->IntiFlags &
2373                                             ACPI_MADT_POLARITY_MASK;
2374                                         intr_flag.intr_el = (isop->IntiFlags &
2375                                             ACPI_MADT_TRIGGER_MASK) >> 2;
2376                                         intr_flag.bustype = BUS_ISA;
2377 
2378                                         return (apix_intx_setup(dip, inum,
2379                                             newirq, NULL, ispec, &intr_flag));
2380                                 }
2381                                 i++;
2382                         }
2383                         hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
2384                             hp->Length);
2385                 }
2386         }
2387         intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
2388         intr_flag.intr_el = INTR_EL_EDGE;
2389         intr_flag.bustype = BUS_ISA;
2390         return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag));
2391 }
2392 
2393 
2394 /*
2395  * Setup IRQ table for pci devices. Return IRQ no or -1 on error
2396  */
2397 static int
2398 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype,
2399     struct intrspec *ispec)
2400 {
2401         int busid, devid, pci_irq;
2402         ddi_acc_handle_t cfg_handle;
2403         uchar_t ipin;
2404         iflag_t intr_flag;
2405         struct apic_io_intr *intrp;
2406 
2407         if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
2408                 return (-1);
2409 
2410         if (busid == 0 && apic_pci_bus_total == 1)
2411                 busid = (int)apic_single_pci_busid;
2412 
2413         if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
2414                 return (-1);
2415         ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
2416         pci_config_teardown(&cfg_handle);
2417 
2418         if (apic_enable_acpi && !apic_use_acpi_madt_only) {     /* ACPI */
2419                 if (apic_acpi_translate_pci_irq(dip, busid, devid,
2420                     ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
2421                         return (-1);
2422 
2423                 intr_flag.bustype = (uchar_t)bustype;
2424                 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec,
2425                     &intr_flag));
2426         }
2427 
2428         /* MP configuration table */
2429         pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
2430         if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) {
2431                 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp);
2432                 if (pci_irq == -1)
2433                         return (-1);
2434         }
2435 
2436         return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL));
2437 }
2438 
2439 /*
2440  * Translate and return IRQ no
2441  */
2442 static int
2443 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec)
2444 {
2445         int newirq, irqno = ispec->intrspec_vec;
2446         int parent_is_pci_or_pciex = 0, child_is_pciex = 0;
2447         int bustype = 0, dev_len;
2448         char dev_type[16];
2449 
2450         if (apic_defconf) {
2451                 mutex_enter(&airq_mutex);
2452                 goto defconf;
2453         }
2454 
2455         if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) {
2456                 mutex_enter(&airq_mutex);
2457                 goto nonpci;
2458         }
2459 
2460         /*
2461          * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string()
2462          * to avoid extra buffer allocation.
2463          */
2464         dev_len = sizeof (dev_type);
2465         if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
2466             DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
2467             &dev_len) == DDI_PROP_SUCCESS) {
2468                 if ((strcmp(dev_type, "pci") == 0) ||
2469                     (strcmp(dev_type, "pciex") == 0))
2470                         parent_is_pci_or_pciex = 1;
2471         }
2472 
2473         if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
2474             DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
2475             &dev_len) == DDI_PROP_SUCCESS) {
2476                 if (strstr(dev_type, "pciex"))
2477                         child_is_pciex = 1;
2478         }
2479 
2480         mutex_enter(&airq_mutex);
2481 
2482         if (parent_is_pci_or_pciex) {
2483                 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
2484                 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec);
2485                 if (newirq != -1)
2486                         goto done;
2487                 bustype = 0;
2488         } else if (strcmp(dev_type, "isa") == 0)
2489                 bustype = BUS_ISA;
2490         else if (strcmp(dev_type, "eisa") == 0)
2491                 bustype = BUS_EISA;
2492 
2493 nonpci:
2494         newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec);
2495         if (newirq != -1)
2496                 goto done;
2497 
2498 defconf:
2499         newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL);
2500         if (newirq == -1) {
2501                 mutex_exit(&airq_mutex);
2502                 return (-1);
2503         }
2504 done:
2505         ASSERT(apic_irq_table[newirq]);
2506         mutex_exit(&airq_mutex);
2507         return (newirq);
2508 }
2509 
2510 static int
2511 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2512 {
2513         int irqno;
2514         apix_vector_t *vecp;
2515 
2516         if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2517                 return (0);
2518 
2519         if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL)
2520                 return (0);
2521 
2522         DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s "
2523             "irqno=0x%x cpuid=%d vector=0x%x\n",
2524             (void *)dip, ddi_driver_name(dip), irqno,
2525             vecp->v_cpuid, vecp->v_vector));
2526 
2527         return (1);
2528 }
2529 
2530 /*
2531  * Return the vector number if the translated IRQ for this device
2532  * has a vector mapping setup. If no IRQ setup exists or no vector is
2533  * allocated to it then return 0.
2534  */
2535 static apix_vector_t *
2536 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2537 {
2538         int irqno;
2539         apix_vector_t *vecp;
2540 
2541         /* get the IRQ number */
2542         if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2543                 return (NULL);
2544 
2545         /* get the vector number if a vector is allocated to this irqno */
2546         vecp = apix_intx_get_vector(irqno);
2547 
2548         return (vecp);
2549 }
2550 
2551 /* stub function */
2552 int
2553 apix_loaded(void)
2554 {
2555         return (apix_is_enabled);
2556 }