1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 #ifndef _INET_IPSEC_IMPL_H
  27 #define _INET_IPSEC_IMPL_H
  28 
  29 #include <inet/ip.h>
  30 #include <inet/ipdrop.h>
  31 
  32 #ifdef  __cplusplus
  33 extern "C" {
  34 #endif
  35 
  36 #define IPSEC_CONF_SRC_ADDRESS  0       /* Source Address */
  37 #define IPSEC_CONF_SRC_PORT             1       /* Source Port */
  38 #define IPSEC_CONF_DST_ADDRESS  2       /* Dest Address */
  39 #define IPSEC_CONF_DST_PORT             3       /* Dest Port */
  40 #define IPSEC_CONF_SRC_MASK             4       /* Source Address Mask */
  41 #define IPSEC_CONF_DST_MASK             5       /* Destination Address Mask */
  42 #define IPSEC_CONF_ULP                  6       /* Upper layer Port */
  43 #define IPSEC_CONF_IPSEC_PROT   7       /* AH or ESP or AH_ESP */
  44 #define IPSEC_CONF_IPSEC_AALGS  8       /* Auth Algorithms - MD5 etc. */
  45 #define IPSEC_CONF_IPSEC_EALGS  9       /* Encr Algorithms - DES etc. */
  46 #define IPSEC_CONF_IPSEC_EAALGS 10      /* Encr Algorithms - MD5 etc. */
  47 #define IPSEC_CONF_IPSEC_SA             11      /* Shared or unique SA */
  48 #define IPSEC_CONF_IPSEC_DIR            12      /* Direction of traffic */
  49 #define IPSEC_CONF_ICMP_TYPE            13      /* ICMP type */
  50 #define IPSEC_CONF_ICMP_CODE            14      /* ICMP code */
  51 #define IPSEC_CONF_NEGOTIATE            15      /* Negotiation */
  52 #define IPSEC_CONF_TUNNEL               16      /* Tunnel */
  53 
  54 /* Type of an entry */
  55 
  56 #define IPSEC_NTYPES                    0x02
  57 #define IPSEC_TYPE_OUTBOUND             0x00
  58 #define IPSEC_TYPE_INBOUND              0x01
  59 
  60 /* Policy */
  61 #define IPSEC_POLICY_APPLY      0x01
  62 #define IPSEC_POLICY_DISCARD    0x02
  63 #define IPSEC_POLICY_BYPASS     0x03
  64 
  65 /* Shared or unique SA */
  66 #define IPSEC_SHARED_SA         0x01
  67 #define IPSEC_UNIQUE_SA         0x02
  68 
  69 /* IPsec protocols and combinations */
  70 #define IPSEC_AH_ONLY           0x01
  71 #define IPSEC_ESP_ONLY          0x02
  72 #define IPSEC_AH_ESP            0x03
  73 
  74 /*
  75  * Internally defined "any" algorithm.
  76  * Move to PF_KEY v3 when that RFC is released.
  77  */
  78 #define SADB_AALG_ANY 255
  79 
  80 #ifdef _KERNEL
  81 
  82 #include <inet/common.h>
  83 #include <netinet/ip6.h>
  84 #include <netinet/icmp6.h>
  85 #include <net/pfkeyv2.h>
  86 #include <inet/ip.h>
  87 #include <inet/sadb.h>
  88 #include <inet/ipsecah.h>
  89 #include <inet/ipsecesp.h>
  90 #include <sys/crypto/common.h>
  91 #include <sys/crypto/api.h>
  92 #include <sys/avl.h>
  93 
  94 /*
  95  * Maximum number of authentication algorithms (can be indexed by one byte
  96  * per PF_KEY and the IKE IPsec DOI.
  97  */
  98 #define MAX_AALGS 256
  99 
 100 /*
 101  * IPsec task queue constants.
 102  */
 103 #define IPSEC_TASKQ_MIN 10
 104 #define IPSEC_TASKQ_MAX 20
 105 
 106 /*
 107  * So we can access IPsec global variables that live in keysock.c.
 108  */
 109 extern boolean_t keysock_extended_reg(netstack_t *);
 110 extern uint32_t keysock_next_seq(netstack_t *);
 111 
 112 /*
 113  * Locking for ipsec policy rules:
 114  *
 115  * policy heads: system policy is static; per-conn polheads are dynamic,
 116  * and refcounted (and inherited); use atomic refcounts and "don't let
 117  * go with both hands".
 118  *
 119  * policy: refcounted; references from polhead, ipsec_out
 120  *
 121  * actions: refcounted; referenced from: action hash table, policy, ipsec_out
 122  * selectors: refcounted; referenced from: selector hash table, policy.
 123  */
 124 
 125 /*
 126  * the following are inspired by, but not directly based on,
 127  * some of the sys/queue.h type-safe pseudo-polymorphic macros
 128  * found in BSD.
 129  *
 130  * XXX If we use these more generally, we'll have to make the names
 131  * less generic (HASH_* will probably clobber other namespaces).
 132  */
 133 
 134 #define HASH_LOCK(table, hash) \
 135         mutex_enter(&(table)[hash].hash_lock)
 136 #define HASH_UNLOCK(table, hash) \
 137         mutex_exit(&(table)[hash].hash_lock)
 138 
 139 #define HASH_LOCKED(table, hash) \
 140         MUTEX_HELD(&(table)[hash].hash_lock)
 141 
 142 #define HASH_ITERATE(var, field, table, hash)           \
 143         var = table[hash].hash_head; var != NULL; var = var->field.hash_next
 144 
 145 #define HASH_NEXT(var, field)           \
 146         (var)->field.hash_next
 147 
 148 #define HASH_INSERT(var, field, table, hash)                    \
 149 {                                                               \
 150         ASSERT(HASH_LOCKED(table, hash));                       \
 151         (var)->field.hash_next = (table)[hash].hash_head;    \
 152         (var)->field.hash_pp = &(table)[hash].hash_head; \
 153         (table)[hash].hash_head = var;                          \
 154         if ((var)->field.hash_next != NULL)                  \
 155                 (var)->field.hash_next->field.hash_pp =   \
 156                         &((var)->field.hash_next);               \
 157 }
 158 
 159 
 160 #define HASH_UNCHAIN(var, field, table, hash)                   \
 161 {                                                               \
 162         ASSERT(MUTEX_HELD(&(table)[hash].hash_lock));               \
 163         HASHLIST_UNCHAIN(var, field);                           \
 164 }
 165 
 166 #define HASHLIST_INSERT(var, field, head)                       \
 167 {                                                               \
 168         (var)->field.hash_next = head;                               \
 169         (var)->field.hash_pp = &(head);                          \
 170         head = var;                                             \
 171         if ((var)->field.hash_next != NULL)                  \
 172                 (var)->field.hash_next->field.hash_pp =   \
 173                         &((var)->field.hash_next);               \
 174 }
 175 
 176 #define HASHLIST_UNCHAIN(var, field)                            \
 177 {                                                               \
 178         *var->field.hash_pp = var->field.hash_next;               \
 179         if (var->field.hash_next)                            \
 180                 var->field.hash_next->field.hash_pp =             \
 181                         var->field.hash_pp;                  \
 182         HASH_NULL(var, field);                                  \
 183 }
 184 
 185 
 186 #define HASH_NULL(var, field)                                   \
 187 {                                                               \
 188         var->field.hash_next = NULL;                         \
 189         var->field.hash_pp = NULL;                           \
 190 }
 191 
 192 #define HASH_LINK(fieldname, type)                              \
 193         struct {                                                \
 194                 type *hash_next;                                \
 195                 type **hash_pp;                                 \
 196         } fieldname
 197 
 198 
 199 #define HASH_HEAD(tag)                                          \
 200         struct {                                                \
 201                 struct tag *hash_head;                          \
 202                 kmutex_t hash_lock;                             \
 203         }
 204 
 205 
 206 typedef struct ipsec_policy_s ipsec_policy_t;
 207 
 208 typedef HASH_HEAD(ipsec_policy_s) ipsec_policy_hash_t;
 209 
 210 /*
 211  * When adding new fields to ipsec_prot_t, make sure to update
 212  * ipsec_in_to_out_action() as well as other code in spd.c
 213  */
 214 
 215 typedef struct ipsec_prot
 216 {
 217         unsigned int
 218                 ipp_use_ah : 1,
 219                 ipp_use_esp : 1,
 220                 ipp_use_se : 1,
 221                 ipp_use_unique : 1,
 222                 ipp_use_espa : 1,
 223                 ipp_pad : 27;
 224         uint8_t         ipp_auth_alg;            /* DOI number */
 225         uint8_t         ipp_encr_alg;            /* DOI number */
 226         uint8_t         ipp_esp_auth_alg;        /* DOI number */
 227         uint16_t        ipp_ah_minbits;          /* AH: min keylen */
 228         uint16_t        ipp_ah_maxbits;          /* AH: max keylen */
 229         uint16_t        ipp_espe_minbits;        /* ESP encr: min keylen */
 230         uint16_t        ipp_espe_maxbits;        /* ESP encr: max keylen */
 231         uint16_t        ipp_espa_minbits;        /* ESP auth: min keylen */
 232         uint16_t        ipp_espa_maxbits;        /* ESP auth: max keylen */
 233         uint32_t        ipp_km_proto;            /* key mgmt protocol */
 234         uint32_t        ipp_km_cookie;           /* key mgmt cookie */
 235         uint32_t        ipp_replay_depth;        /* replay window */
 236         /* XXX add lifetimes */
 237 } ipsec_prot_t;
 238 
 239 #define IPSEC_MAX_KEYBITS (0xffff)
 240 
 241 /*
 242  * An individual policy action, possibly a member of a chain.
 243  *
 244  * Action chains may be shared between multiple policy rules.
 245  *
 246  * With one exception (IPSEC_POLICY_LOG), a chain consists of an
 247  * ordered list of alternative ways to handle a packet.
 248  *
 249  * All actions are also "interned" into a hash table (to allow
 250  * multiple rules with the same action chain to share one copy in
 251  * memory).
 252  */
 253 
 254 typedef struct ipsec_act
 255 {
 256         uint8_t         ipa_type;
 257         uint8_t         ipa_log;
 258         union
 259         {
 260                 ipsec_prot_t    ipau_apply;
 261                 uint8_t         ipau_reject_type;
 262                 uint32_t        ipau_resolve_id; /* magic cookie */
 263                 uint8_t         ipau_log_type;
 264         } ipa_u;
 265 #define ipa_apply ipa_u.ipau_apply
 266 #define ipa_reject_type ipa_u.ipau_reject_type
 267 #define ipa_log_type ipa_u.ipau_log_type
 268 #define ipa_resolve_type ipa_u.ipau_resolve_type
 269 } ipsec_act_t;
 270 
 271 #define IPSEC_ACT_APPLY         0x01 /* match IPSEC_POLICY_APPLY */
 272 #define IPSEC_ACT_DISCARD       0x02 /* match IPSEC_POLICY_DISCARD */
 273 #define IPSEC_ACT_BYPASS        0x03 /* match IPSEC_POLICY_BYPASS */
 274 #define IPSEC_ACT_REJECT        0x04
 275 #define IPSEC_ACT_CLEAR         0x05
 276 
 277 typedef struct ipsec_action_s
 278 {
 279         HASH_LINK(ipa_hash, struct ipsec_action_s);
 280         struct ipsec_action_s   *ipa_next;      /* next alternative */
 281         uint32_t                ipa_refs;               /* refcount */
 282         ipsec_act_t             ipa_act;
 283         /*
 284          * The following bits are equivalent to an OR of bits included in the
 285          * ipau_apply fields of this and subsequent actions in an
 286          * action chain; this is an optimization for the sake of
 287          * ipsec_out_process() in ip.c and a few other places.
 288          */
 289         unsigned int
 290                 ipa_hval: 8,
 291                 ipa_allow_clear:1,              /* rule allows cleartext? */
 292                 ipa_want_ah:1,                  /* an action wants ah */
 293                 ipa_want_esp:1,                 /* an action wants esp */
 294                 ipa_want_se:1,                  /* an action wants se */
 295                 ipa_want_unique:1,              /* want unique sa's */
 296                 ipa_pad:19;
 297         uint32_t                ipa_ovhd;       /* per-packet encap ovhd */
 298 } ipsec_action_t;
 299 
 300 #define IPACT_REFHOLD(ipa) {                    \
 301         atomic_inc_32(&(ipa)->ipa_refs); \
 302         ASSERT((ipa)->ipa_refs != 0);        \
 303 }
 304 #define IPACT_REFRELE(ipa) {                                    \
 305         ASSERT((ipa)->ipa_refs != 0);                                \
 306         membar_exit();                                          \
 307         if (atomic_dec_32_nv(&(ipa)->ipa_refs) == 0)     \
 308                 ipsec_action_free(ipa);                         \
 309         (ipa) = 0;                                              \
 310 }
 311 
 312 /*
 313  * For now, use a trivially sized hash table for actions.
 314  * In the future we can add the structure canonicalization necessary
 315  * to get the hash function to behave correctly..
 316  */
 317 #define IPSEC_ACTION_HASH_SIZE 1
 318 
 319 /*
 320  * Merged address structure, for cheezy address-family independent
 321  * matches in policy code.
 322  */
 323 
 324 typedef union ipsec_addr
 325 {
 326         in6_addr_t      ipsad_v6;
 327         in_addr_t       ipsad_v4;
 328 } ipsec_addr_t;
 329 
 330 /*
 331  * ipsec selector set, as used by the kernel policy structures.
 332  * Note that that we specify "local" and "remote"
 333  * rather than "source" and "destination", which allows the selectors
 334  * for symmetric policy rules to be shared between inbound and
 335  * outbound rules.
 336  *
 337  * "local" means "destination" on inbound, and "source" on outbound.
 338  * "remote" means "source" on inbound, and "destination" on outbound.
 339  * XXX if we add a fifth policy enforcement point for forwarded packets,
 340  * what do we do?
 341  *
 342  * The ipsl_valid mask is not done as a bitfield; this is so we
 343  * can use "ffs()" to find the "most interesting" valid tag.
 344  *
 345  * XXX should we have multiple types for space-conservation reasons?
 346  * (v4 vs v6?  prefix vs. range)?
 347  */
 348 
 349 typedef struct ipsec_selkey
 350 {
 351         uint32_t        ipsl_valid;             /* bitmask of valid entries */
 352 #define IPSL_REMOTE_ADDR                0x00000001
 353 #define IPSL_LOCAL_ADDR                 0x00000002
 354 #define IPSL_REMOTE_PORT                0x00000004
 355 #define IPSL_LOCAL_PORT                 0x00000008
 356 #define IPSL_PROTOCOL                   0x00000010
 357 #define IPSL_ICMP_TYPE                  0x00000020
 358 #define IPSL_ICMP_CODE                  0x00000040
 359 #define IPSL_IPV6                       0x00000080
 360 #define IPSL_IPV4                       0x00000100
 361 
 362 #define IPSL_WILDCARD                   0x0000007f
 363 
 364         ipsec_addr_t    ipsl_local;
 365         ipsec_addr_t    ipsl_remote;
 366         uint16_t        ipsl_lport;
 367         uint16_t        ipsl_rport;
 368         /*
 369          * ICMP type and code selectors. Both have an end value to
 370          * specify ranges, or * and *_end are equal for a single
 371          * value
 372          */
 373         uint8_t         ipsl_icmp_type;
 374         uint8_t         ipsl_icmp_type_end;
 375         uint8_t         ipsl_icmp_code;
 376         uint8_t         ipsl_icmp_code_end;
 377 
 378         uint8_t         ipsl_proto;             /* ip payload type */
 379         uint8_t         ipsl_local_pfxlen;      /* #bits of prefix */
 380         uint8_t         ipsl_remote_pfxlen;     /* #bits of prefix */
 381         uint8_t         ipsl_mbz;
 382 
 383         /* Insert new elements above this line */
 384         uint32_t        ipsl_pol_hval;
 385         uint32_t        ipsl_sel_hval;
 386 } ipsec_selkey_t;
 387 
 388 typedef struct ipsec_sel
 389 {
 390         HASH_LINK(ipsl_hash, struct ipsec_sel);
 391         uint32_t        ipsl_refs;              /* # refs to this sel */
 392         ipsec_selkey_t  ipsl_key;               /* actual selector guts */
 393 } ipsec_sel_t;
 394 
 395 /*
 396  * One policy rule.  This will be linked into a single hash chain bucket in
 397  * the parent rule structure.  If the selector is simple enough to
 398  * allow hashing, it gets filed under ipsec_policy_root_t->ipr_hash.
 399  * Otherwise it goes onto a linked list in ipsec_policy_root_t->ipr_nonhash[af]
 400  *
 401  * In addition, we file the rule into an avl tree keyed by the rule index.
 402  * (Duplicate rules are permitted; the comparison function breaks ties).
 403  */
 404 struct ipsec_policy_s
 405 {
 406         HASH_LINK(ipsp_hash, struct ipsec_policy_s);
 407         avl_node_t              ipsp_byid;
 408         uint64_t                ipsp_index;     /* unique id */
 409         uint32_t                ipsp_prio;      /* rule priority */
 410         uint32_t                ipsp_refs;
 411         ipsec_sel_t             *ipsp_sel;      /* selector set (shared) */
 412         ipsec_action_t          *ipsp_act;      /* action (may be shared) */
 413         netstack_t              *ipsp_netstack; /* No netstack_hold */
 414 };
 415 
 416 #define IPPOL_REFHOLD(ipp) {                    \
 417         atomic_inc_32(&(ipp)->ipsp_refs);        \
 418         ASSERT((ipp)->ipsp_refs != 0);               \
 419 }
 420 #define IPPOL_REFRELE(ipp) {                                    \
 421         ASSERT((ipp)->ipsp_refs != 0);                               \
 422         membar_exit();                                          \
 423         if (atomic_dec_32_nv(&(ipp)->ipsp_refs) == 0)    \
 424                 ipsec_policy_free(ipp);                         \
 425         (ipp) = 0;                                              \
 426 }
 427 
 428 #define IPPOL_UNCHAIN(php, ip)                                  \
 429         HASHLIST_UNCHAIN((ip), ipsp_hash);                      \
 430         avl_remove(&(php)->iph_rulebyid, (ip));                  \
 431         IPPOL_REFRELE(ip);
 432 
 433 /*
 434  * Policy ruleset.  One per (protocol * direction) for system policy.
 435  */
 436 
 437 #define IPSEC_AF_V4     0
 438 #define IPSEC_AF_V6     1
 439 #define IPSEC_NAF       2
 440 
 441 typedef struct ipsec_policy_root_s
 442 {
 443         ipsec_policy_t          *ipr_nonhash[IPSEC_NAF];
 444         int                     ipr_nchains;
 445         ipsec_policy_hash_t     *ipr_hash;
 446 } ipsec_policy_root_t;
 447 
 448 /*
 449  * Policy head.  One for system policy; there may also be one present
 450  * on ill_t's with interface-specific policy, as well as one present
 451  * for sockets with per-socket policy allocated.
 452  */
 453 
 454 typedef struct ipsec_policy_head_s
 455 {
 456         uint32_t        iph_refs;
 457         krwlock_t       iph_lock;
 458         uint64_t        iph_gen; /* generation number */
 459         ipsec_policy_root_t iph_root[IPSEC_NTYPES];
 460         avl_tree_t      iph_rulebyid;
 461 } ipsec_policy_head_t;
 462 
 463 #define IPPH_REFHOLD(iph) {                     \
 464         atomic_inc_32(&(iph)->iph_refs); \
 465         ASSERT((iph)->iph_refs != 0);                \
 466 }
 467 #define IPPH_REFRELE(iph, ns) {                                 \
 468         ASSERT((iph)->iph_refs != 0);                                \
 469         membar_exit();                                          \
 470         if (atomic_dec_32_nv(&(iph)->iph_refs) == 0)     \
 471                 ipsec_polhead_free(iph, ns);                    \
 472         (iph) = 0;                                              \
 473 }
 474 
 475 /*
 476  * IPsec fragment related structures
 477  */
 478 
 479 typedef struct ipsec_fragcache_entry {
 480         struct ipsec_fragcache_entry *itpfe_next;       /* hash list chain */
 481         mblk_t *itpfe_fraglist;                 /* list of fragments */
 482         time_t itpfe_exp;                       /* time when entry is stale */
 483         int itpfe_depth;                        /* # of fragments in list */
 484         ipsec_addr_t itpfe_frag_src;
 485         ipsec_addr_t itpfe_frag_dst;
 486 #define itpfe_src itpfe_frag_src.ipsad_v4
 487 #define itpfe_src6 itpfe_frag_src.ipsad_v6
 488 #define itpfe_dst itpfe_frag_dst.ipsad_v4
 489 #define itpfe_dst6 itpfe_frag_dst.ipsad_v6
 490         uint32_t itpfe_id;                      /* IP datagram ID */
 491         uint8_t itpfe_proto;                    /* IP Protocol */
 492         uint8_t itpfe_last;                     /* Last packet */
 493 } ipsec_fragcache_entry_t;
 494 
 495 typedef struct ipsec_fragcache {
 496         kmutex_t itpf_lock;
 497         struct ipsec_fragcache_entry **itpf_ptr;
 498         struct ipsec_fragcache_entry *itpf_freelist;
 499         time_t itpf_expire_hint;        /* time when oldest entry is stale */
 500 } ipsec_fragcache_t;
 501 
 502 /*
 503  * Tunnel policies.  We keep a minature of the transport-mode/global policy
 504  * per each tunnel instance.
 505  *
 506  * People who need both an itp held down AND one of its polheads need to
 507  * first lock the itp, THEN the polhead, otherwise deadlock WILL occur.
 508  */
 509 typedef struct ipsec_tun_pol_s {
 510         avl_node_t itp_node;
 511         kmutex_t itp_lock;
 512         uint64_t itp_next_policy_index;
 513         ipsec_policy_head_t *itp_policy;
 514         ipsec_policy_head_t *itp_inactive;
 515         uint32_t itp_flags;
 516         uint32_t itp_refcnt;
 517         char itp_name[LIFNAMSIZ];
 518         ipsec_fragcache_t itp_fragcache;
 519 } ipsec_tun_pol_t;
 520 /* NOTE - Callers (tun code) synchronize their own instances for these flags. */
 521 #define ITPF_P_ACTIVE 0x1       /* Are we using IPsec right now? */
 522 #define ITPF_P_TUNNEL 0x2       /* Negotiate tunnel-mode */
 523 /* Optimization -> Do we have per-port security entries in this polhead? */
 524 #define ITPF_P_PER_PORT_SECURITY 0x4
 525 #define ITPF_PFLAGS 0x7
 526 #define ITPF_SHIFT 3
 527 
 528 #define ITPF_I_ACTIVE 0x8       /* Is the inactive using IPsec right now? */
 529 #define ITPF_I_TUNNEL 0x10      /* Negotiate tunnel-mode (on inactive) */
 530 /* Optimization -> Do we have per-port security entries in this polhead? */
 531 #define ITPF_I_PER_PORT_SECURITY 0x20
 532 #define ITPF_IFLAGS 0x38
 533 
 534 /* NOTE:  f cannot be an expression. */
 535 #define ITPF_CLONE(f) (f) = (((f) & ITPF_PFLAGS) | \
 536             (((f) & ITPF_PFLAGS) << ITPF_SHIFT));
 537 #define ITPF_SWAP(f) (f) = ((((f) & ITPF_PFLAGS) << ITPF_SHIFT) | \
 538             (((f) & ITPF_IFLAGS) >> ITPF_SHIFT))
 539 
 540 #define ITP_P_ISACTIVE(itp, iph) ((itp)->itp_flags & \
 541         (((itp)->itp_policy == (iph)) ? ITPF_P_ACTIVE : ITPF_I_ACTIVE))
 542 
 543 #define ITP_P_ISTUNNEL(itp, iph) ((itp)->itp_flags & \
 544         (((itp)->itp_policy == (iph)) ? ITPF_P_TUNNEL : ITPF_I_TUNNEL))
 545 
 546 #define ITP_P_ISPERPORT(itp, iph) ((itp)->itp_flags & \
 547         (((itp)->itp_policy == (iph)) ? ITPF_P_PER_PORT_SECURITY : \
 548         ITPF_I_PER_PORT_SECURITY))
 549 
 550 #define ITP_REFHOLD(itp) { \
 551         atomic_inc_32(&((itp)->itp_refcnt));     \
 552         ASSERT((itp)->itp_refcnt != 0); \
 553 }
 554 
 555 #define ITP_REFRELE(itp, ns) { \
 556         ASSERT((itp)->itp_refcnt != 0); \
 557         membar_exit(); \
 558         if (atomic_dec_32_nv(&((itp)->itp_refcnt)) == 0) \
 559                 itp_free(itp, ns); \
 560 }
 561 
 562 /*
 563  * Certificate identity.
 564  */
 565 
 566 typedef struct ipsid_s
 567 {
 568         struct ipsid_s *ipsid_next;
 569         struct ipsid_s **ipsid_ptpn;
 570         uint32_t        ipsid_refcnt;
 571         int             ipsid_type;     /* id type */
 572         char            *ipsid_cid;     /* certificate id string */
 573 } ipsid_t;
 574 
 575 /*
 576  * ipsid_t reference hold/release macros, just like ipsa versions.
 577  */
 578 
 579 #define IPSID_REFHOLD(ipsid) {                  \
 580         atomic_inc_32(&(ipsid)->ipsid_refcnt);   \
 581         ASSERT((ipsid)->ipsid_refcnt != 0);  \
 582 }
 583 
 584 /*
 585  * Decrement the reference count on the ID.  Someone else will clean up
 586  * after us later.
 587  */
 588 
 589 #define IPSID_REFRELE(ipsid) {                                  \
 590         membar_exit();                                          \
 591         atomic_dec_32(&(ipsid)->ipsid_refcnt);           \
 592 }
 593 
 594 /*
 595  * Following are the estimates of what the maximum AH and ESP header size
 596  * would be. This is used to tell the upper layer the right value of MSS
 597  * it should use without consulting AH/ESP. If the size is something
 598  * different from this, ULP will learn the right one through
 599  * ICMP_FRAGMENTATION_NEEDED messages generated locally.
 600  *
 601  * AH : 12 bytes of constant header + 32 bytes of ICV checksum (SHA-512).
 602  */
 603 #define IPSEC_MAX_AH_HDR_SIZE   (44)
 604 
 605 /*
 606  * ESP : Is a bit more complex...
 607  *
 608  * A system of one inequality and one equation MUST be solved for proper ESP
 609  * overhead.  The inequality is:
 610  *
 611  *    MTU - sizeof (IP header + options) >=
 612  *              sizeof (esph_t) + sizeof (IV or ctr) + data-size + 2 + ICV
 613  *
 614  * IV or counter is almost always the cipher's block size.  The equation is:
 615  *
 616  *    data-size % block-size = (block-size - 2)
 617  *
 618  * so we can put as much data into the datagram as possible.  If we are
 619  * pessimistic and include our largest overhead cipher (AES) and hash
 620  * (SHA-512), and assume 1500-byte MTU minus IPv4 overhead of 20 bytes, we get:
 621  *
 622  *    1480 >= 8 + 16 + data-size + 2 + 32
 623  *    1480 >= 58 + data-size
 624  *    1422 >= data-size,      1422 % 16 = 14, so 58 is the overhead!
 625  *
 626  * But, let's re-run the numbers with the same algorithms, but with an IPv6
 627  * header:
 628  *
 629  *    1460 >= 58 + data-size
 630  *    1402 >= data-size,     1402 % 16 = 10, meaning shrink to 1390 to get 14,
 631  *
 632  * which means the overhead is now 70.
 633  *
 634  * Hmmm... IPv4 headers can never be anything other than multiples of 4-bytes,
 635  * and IPv6 ones can never be anything other than multiples of 8-bytes.  We've
 636  * seen overheads of 58 and 70.  58 % 16 == 10, and 70 % 16 == 6.  IPv4 could
 637  * force us to have 62 ( % 16 == 14) or 66 ( % 16 == 2), or IPv6 could force us
 638  * to have 78 ( % 16 = 14).  Let's compute IPv6 + 8-bytes of options:
 639  *
 640  *    1452 >= 58 + data-size
 641  *    1394 >= data-size,     1394 % 16 = 2, meaning shrink to 1390 to get 14,
 642  *
 643  * Aha!  The "ESP overhead" shrinks to 62 (70 - 8).  This is good.  Let's try
 644  * IPv4 + 8 bytes of IPv4 options:
 645  *
 646  *    1472 >= 58 + data-size
 647  *    1414 >= data-size,      1414 % 16 = 6, meaning shrink to 1406,
 648  *
 649  * meaning 66 is the overhead.  Let's try 12 bytes:
 650  *
 651  *    1468 >= 58 + data-size
 652  *    1410 >= data-size,      1410 % 16 = 2, meaning also shrink to 1406,
 653  *
 654  * meaning 62 is the overhead.  How about 16 bytes?
 655  *
 656  *    1464 >= 58 + data-size
 657  *    1406 >= data-size,      1402 % 16 = 14, which is great!
 658  *
 659  * this means 58 is the overhead.  If I wrap and add 20 bytes, it looks just
 660  * like IPv6's 70 bytes.  If I add 24, we go back to 66 bytes.
 661  *
 662  * So picking 70 is a sensible, conservative default.  Optimal calculations
 663  * will depend on knowing pre-ESP header length (called "divpoint" in the ESP
 664  * code), which could be cached in the conn_t for connected endpoints, or
 665  * which must be computed on every datagram otherwise.
 666  */
 667 #define IPSEC_MAX_ESP_HDR_SIZE  (70)
 668 
 669 /*
 670  * Alternate, when we know the crypto block size via the SA.  Assume an ICV on
 671  * the SA.  Use:
 672  *
 673  * sizeof (esph_t) + 2 * (sizeof (IV/counter)) - 2 + sizeof (ICV).  The "-2"
 674  * discounts the overhead of the pad + padlen that gets swallowed up by the
 675  * second (theoretically all-pad) cipher-block.  If you use our examples of
 676  * AES and SHA512, you get:
 677  *
 678  *    8 + 32 - 2 + 32 == 70.
 679  *
 680  * Which is our pre-computed maximum above.
 681  */
 682 #include <inet/ipsecesp.h>
 683 #define IPSEC_BASE_ESP_HDR_SIZE(sa) \
 684         (sizeof (esph_t) + ((sa)->ipsa_iv_len << 1) - 2 + (sa)->ipsa_mac_len)
 685 
 686 /*
 687  * Identity hash table.
 688  *
 689  * Identities are refcounted and "interned" into the hash table.
 690  * Only references coming from other objects (SA's, latching state)
 691  * are counted in ipsid_refcnt.
 692  *
 693  * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
 694  * is locked, (b) we know that the refcount must be > 0.
 695  *
 696  * The ipsid_next and ipsid_ptpn fields are only to be referenced or
 697  * modified when the bucket lock is held; in particular, we only
 698  * delete objects while holding the bucket lock, and we only increase
 699  * the refcount from 0 to 1 while the bucket lock is held.
 700  */
 701 
 702 #define IPSID_HASHSIZE 64
 703 
 704 typedef struct ipsif_s
 705 {
 706         ipsid_t *ipsif_head;
 707         kmutex_t ipsif_lock;
 708 } ipsif_t;
 709 
 710 /*
 711  * For call to the kernel crypto framework. State needed during
 712  * the execution of a crypto request.
 713  */
 714 typedef struct ipsec_crypto_s {
 715         size_t          ic_skip_len;            /* len to skip for AH auth */
 716         crypto_data_t   ic_crypto_data;         /* single op crypto data */
 717         crypto_dual_data_t ic_crypto_dual_data; /* for dual ops */
 718         crypto_data_t   ic_crypto_mac;          /* to store the MAC */
 719         ipsa_cm_mech_t  ic_cmm;
 720 } ipsec_crypto_t;
 721 
 722 /*
 723  * IPsec stack instances
 724  */
 725 struct ipsec_stack {
 726         netstack_t              *ipsec_netstack;        /* Common netstack */
 727 
 728         /* Packet dropper for IP IPsec processing failures */
 729         ipdropper_t             ipsec_dropper;
 730 
 731 /* From spd.c */
 732         /*
 733          * Policy rule index generator.  We assume this won't wrap in the
 734          * lifetime of a system.  If we make 2^20 policy changes per second,
 735          * this will last 2^44 seconds, or roughly 500,000 years, so we don't
 736          * have to worry about reusing policy index values.
 737          */
 738         uint64_t                ipsec_next_policy_index;
 739 
 740         HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
 741         HASH_HEAD(ipsec_sel)      *ipsec_sel_hash;
 742         uint32_t                ipsec_spd_hashsize;
 743 
 744         ipsif_t                 ipsec_ipsid_buckets[IPSID_HASHSIZE];
 745 
 746         /*
 747          * Active & Inactive system policy roots
 748          */
 749         ipsec_policy_head_t     ipsec_system_policy;
 750         ipsec_policy_head_t     ipsec_inactive_policy;
 751 
 752         /* Packet dropper for generic SPD drops. */
 753         ipdropper_t             ipsec_spd_dropper;
 754 
 755 /* ipdrop.c */
 756         kstat_t                 *ipsec_ip_drop_kstat;
 757         struct ip_dropstats     *ipsec_ip_drop_types;
 758 
 759 /* spd.c */
 760         /*
 761          * Have a counter for every possible policy message in
 762          * ipsec_policy_failure_msgs
 763          */
 764         uint32_t                ipsec_policy_failure_count[IPSEC_POLICY_MAX];
 765         /* Time since last ipsec policy failure that printed a message. */
 766         hrtime_t                ipsec_policy_failure_last;
 767 
 768 /* ip_spd.c */
 769         /* stats */
 770         kstat_t                 *ipsec_ksp;
 771         struct ipsec_kstats_s   *ipsec_kstats;
 772 
 773 /* sadb.c */
 774         /* Packet dropper for generic SADB drops. */
 775         ipdropper_t             ipsec_sadb_dropper;
 776 
 777 /* spd.c */
 778         boolean_t               ipsec_inbound_v4_policy_present;
 779         boolean_t               ipsec_outbound_v4_policy_present;
 780         boolean_t               ipsec_inbound_v6_policy_present;
 781         boolean_t               ipsec_outbound_v6_policy_present;
 782 
 783 /* spd.c */
 784         /*
 785          * Because policy needs to know what algorithms are supported, keep the
 786          * lists of algorithms here.
 787          */
 788         kmutex_t                ipsec_alg_lock;
 789 
 790         uint8_t                 ipsec_nalgs[IPSEC_NALGTYPES];
 791         ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
 792 
 793         uint8_t         ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
 794 
 795         int             ipsec_algs_exec_mode[IPSEC_NALGTYPES];
 796 
 797         uint32_t        ipsec_tun_spd_hashsize;
 798         /*
 799          * Tunnel policies - AVL tree indexed by tunnel name.
 800          */
 801         krwlock_t       ipsec_tunnel_policy_lock;
 802         uint64_t        ipsec_tunnel_policy_gen;
 803         avl_tree_t      ipsec_tunnel_policies;
 804 
 805 /* ipsec_loader.c */
 806         kmutex_t        ipsec_loader_lock;
 807         int             ipsec_loader_state;
 808         int             ipsec_loader_sig;
 809         kt_did_t        ipsec_loader_tid;
 810         kcondvar_t      ipsec_loader_sig_cv;    /* For loader_sig conditions. */
 811 
 812 };
 813 typedef struct ipsec_stack ipsec_stack_t;
 814 
 815 /* Handle the kstat_create in ip_drop_init() failing */
 816 #define DROPPER(_ipss, _dropper) \
 817         (((_ipss)->ipsec_ip_drop_types == NULL) ? NULL : \
 818         &((_ipss)->ipsec_ip_drop_types->_dropper))
 819 
 820 /*
 821  * Loader states..
 822  */
 823 #define IPSEC_LOADER_WAIT       0
 824 #define IPSEC_LOADER_FAILED     -1
 825 #define IPSEC_LOADER_SUCCEEDED  1
 826 
 827 /*
 828  * ipsec_loader entrypoints.
 829  */
 830 extern void ipsec_loader_init(ipsec_stack_t *);
 831 extern void ipsec_loader_start(ipsec_stack_t *);
 832 extern void ipsec_loader_destroy(ipsec_stack_t *);
 833 extern void ipsec_loader_loadnow(ipsec_stack_t *);
 834 extern boolean_t ipsec_loader_wait(queue_t *q, ipsec_stack_t *);
 835 extern boolean_t ipsec_loaded(ipsec_stack_t *);
 836 extern boolean_t ipsec_failed(ipsec_stack_t *);
 837 
 838 /*
 839  * ipsec policy entrypoints (spd.c)
 840  */
 841 
 842 extern void ipsec_policy_g_destroy(void);
 843 extern void ipsec_policy_g_init(void);
 844 
 845 extern mblk_t   *ipsec_add_crypto_data(mblk_t *, ipsec_crypto_t **);
 846 extern mblk_t   *ipsec_remove_crypto_data(mblk_t *, ipsec_crypto_t **);
 847 extern mblk_t   *ipsec_free_crypto_data(mblk_t *);
 848 extern int ipsec_alloc_table(ipsec_policy_head_t *, int, int, boolean_t,
 849     netstack_t *);
 850 extern void ipsec_polhead_init(ipsec_policy_head_t *, int);
 851 extern void ipsec_polhead_destroy(ipsec_policy_head_t *);
 852 extern void ipsec_polhead_free_table(ipsec_policy_head_t *);
 853 extern mblk_t *ipsec_check_global_policy(mblk_t *, conn_t *, ipha_t *,
 854     ip6_t *, ip_recv_attr_t *, netstack_t *ns);
 855 extern mblk_t *ipsec_check_inbound_policy(mblk_t *, conn_t *, ipha_t *, ip6_t *,
 856     ip_recv_attr_t *);
 857 
 858 extern boolean_t ipsec_in_to_out(ip_recv_attr_t *, ip_xmit_attr_t *,
 859     mblk_t *, ipha_t *, ip6_t *);
 860 extern void ipsec_in_release_refs(ip_recv_attr_t *);
 861 extern void ipsec_out_release_refs(ip_xmit_attr_t *);
 862 extern void ipsec_log_policy_failure(int, char *, ipha_t *, ip6_t *, boolean_t,
 863     netstack_t *);
 864 extern boolean_t ipsec_inbound_accept_clear(mblk_t *, ipha_t *, ip6_t *);
 865 extern int ipsec_conn_cache_policy(conn_t *, boolean_t);
 866 extern void ipsec_cache_outbound_policy(const conn_t *, const in6_addr_t *,
 867     const in6_addr_t *, in_port_t, ip_xmit_attr_t *);
 868 extern boolean_t ipsec_outbound_policy_current(ip_xmit_attr_t *);
 869 extern ipsec_action_t *ipsec_in_to_out_action(ip_recv_attr_t *);
 870 extern void ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira);
 871 
 872 extern void ipsec_policy_free(ipsec_policy_t *);
 873 extern void ipsec_action_free(ipsec_action_t *);
 874 extern void ipsec_polhead_free(ipsec_policy_head_t *, netstack_t *);
 875 extern ipsec_policy_head_t *ipsec_polhead_split(ipsec_policy_head_t *,
 876     netstack_t *);
 877 extern ipsec_policy_head_t *ipsec_polhead_create(void);
 878 extern ipsec_policy_head_t *ipsec_system_policy(netstack_t *);
 879 extern ipsec_policy_head_t *ipsec_inactive_policy(netstack_t *);
 880 extern void ipsec_swap_policy(ipsec_policy_head_t *, ipsec_policy_head_t *,
 881     netstack_t *);
 882 extern void ipsec_swap_global_policy(netstack_t *);
 883 
 884 extern int ipsec_clone_system_policy(netstack_t *);
 885 extern ipsec_policy_t *ipsec_policy_create(ipsec_selkey_t *,
 886     const ipsec_act_t *, int, int, uint64_t *, netstack_t *);
 887 extern boolean_t ipsec_policy_delete(ipsec_policy_head_t *,
 888     ipsec_selkey_t *, int, netstack_t *);
 889 extern int ipsec_policy_delete_index(ipsec_policy_head_t *, uint64_t,
 890     netstack_t *);
 891 extern boolean_t ipsec_polhead_insert(ipsec_policy_head_t *, ipsec_act_t *,
 892     uint_t, int, int, netstack_t *);
 893 extern void ipsec_polhead_flush(ipsec_policy_head_t *, netstack_t *);
 894 extern int ipsec_copy_polhead(ipsec_policy_head_t *, ipsec_policy_head_t *,
 895     netstack_t *);
 896 extern void ipsec_actvec_from_req(const ipsec_req_t *, ipsec_act_t **, uint_t *,
 897     netstack_t *);
 898 extern void ipsec_actvec_free(ipsec_act_t *, uint_t);
 899 extern int ipsec_req_from_head(ipsec_policy_head_t *, ipsec_req_t *, int);
 900 extern mblk_t *ipsec_construct_inverse_acquire(sadb_msg_t *, sadb_ext_t **,
 901     netstack_t *);
 902 extern ipsec_policy_t *ipsec_find_policy(int, const conn_t *,
 903     ipsec_selector_t *, netstack_t *);
 904 extern ipsid_t *ipsid_lookup(int, char *, netstack_t *);
 905 extern boolean_t ipsid_equal(ipsid_t *, ipsid_t *);
 906 extern void ipsid_gc(netstack_t *);
 907 extern void ipsec_latch_ids(ipsec_latch_t *, ipsid_t *, ipsid_t *);
 908 
 909 extern void ipsec_config_flush(netstack_t *);
 910 extern boolean_t ipsec_check_policy(ipsec_policy_head_t *, ipsec_policy_t *,
 911     int);
 912 extern void ipsec_enter_policy(ipsec_policy_head_t *, ipsec_policy_t *, int,
 913     netstack_t *);
 914 extern boolean_t ipsec_check_action(ipsec_act_t *, int *, netstack_t *);
 915 
 916 extern void iplatch_free(ipsec_latch_t *);
 917 extern ipsec_latch_t *iplatch_create(void);
 918 extern int ipsec_set_req(cred_t *, conn_t *, ipsec_req_t *);
 919 
 920 extern void ipsec_insert_always(avl_tree_t *tree, void *new_node);
 921 
 922 extern int32_t ipsec_act_ovhd(const ipsec_act_t *act);
 923 extern mblk_t *sadb_whack_label(mblk_t *, ipsa_t *, ip_xmit_attr_t *,
 924     kstat_named_t *, ipdropper_t *);
 925 extern mblk_t *sadb_whack_label_v4(mblk_t *, ipsa_t *, kstat_named_t *,
 926     ipdropper_t *);
 927 extern mblk_t *sadb_whack_label_v6(mblk_t *, ipsa_t *, kstat_named_t *,
 928     ipdropper_t *);
 929 extern boolean_t update_iv(uint8_t *, queue_t *, ipsa_t *, ipsecesp_stack_t *);
 930 
 931 /*
 932  * Tunnel-support SPD functions and variables.
 933  */
 934 struct iptun_s; /* Defined in inet/iptun/iptun_impl.h. */
 935 extern mblk_t *ipsec_tun_inbound(ip_recv_attr_t *, mblk_t *,  ipsec_tun_pol_t *,
 936     ipha_t *, ip6_t *, ipha_t *, ip6_t *, int, netstack_t *);
 937 extern mblk_t *ipsec_tun_outbound(mblk_t *, struct iptun_s *, ipha_t *,
 938     ip6_t *, ipha_t *, ip6_t *, int, ip_xmit_attr_t *);
 939 extern void itp_free(ipsec_tun_pol_t *, netstack_t *);
 940 extern ipsec_tun_pol_t *create_tunnel_policy(char *, int *, uint64_t *,
 941     netstack_t *);
 942 extern ipsec_tun_pol_t *get_tunnel_policy(char *, netstack_t *);
 943 extern void itp_unlink(ipsec_tun_pol_t *, netstack_t *);
 944 extern void itp_walk(void (*)(ipsec_tun_pol_t *, void *, netstack_t *),
 945     void *, netstack_t *);
 946 
 947 extern ipsec_tun_pol_t *itp_get_byaddr(uint32_t *, uint32_t *, int,
 948     ip_stack_t *);
 949 
 950 /*
 951  * IPsec AH/ESP functions called from IP or the common SADB code in AH.
 952  */
 953 
 954 extern void ipsecah_in_assocfailure(mblk_t *, char, ushort_t, char *,
 955     uint32_t, void *, int, ip_recv_attr_t *ira);
 956 extern void ipsecesp_in_assocfailure(mblk_t *, char, ushort_t, char *,
 957     uint32_t, void *, int, ip_recv_attr_t *ira);
 958 extern void ipsecesp_send_keepalive(ipsa_t *);
 959 
 960 /*
 961  * Algorithm management helper functions.
 962  */
 963 extern boolean_t ipsec_valid_key_size(uint16_t, ipsec_alginfo_t *);
 964 
 965 /*
 966  * Per-socket policy, for now, takes precedence... this priority value
 967  * insures it.
 968  */
 969 #define IPSEC_PRIO_SOCKET               0x1000000
 970 
 971 /* DDI initialization functions. */
 972 extern  boolean_t    ipsecesp_ddi_init(void);
 973 extern  boolean_t    ipsecah_ddi_init(void);
 974 extern  boolean_t    keysock_ddi_init(void);
 975 extern  boolean_t    spdsock_ddi_init(void);
 976 
 977 extern  void    ipsecesp_ddi_destroy(void);
 978 extern  void    ipsecah_ddi_destroy(void);
 979 extern  void    keysock_ddi_destroy(void);
 980 extern  void    spdsock_ddi_destroy(void);
 981 
 982 /*
 983  * AH- and ESP-specific functions that are called directly by other modules.
 984  */
 985 extern void ipsecah_fill_defs(struct sadb_x_ecomb *, netstack_t *);
 986 extern void ipsecesp_fill_defs(struct sadb_x_ecomb *, netstack_t *);
 987 extern void ipsecah_algs_changed(netstack_t *);
 988 extern void ipsecesp_algs_changed(netstack_t *);
 989 extern void ipsecesp_init_funcs(ipsa_t *);
 990 extern void ipsecah_init_funcs(ipsa_t *);
 991 extern mblk_t *ipsecah_icmp_error(mblk_t *, ip_recv_attr_t *);
 992 extern mblk_t *ipsecesp_icmp_error(mblk_t *, ip_recv_attr_t *);
 993 
 994 /*
 995  * spdsock functions that are called directly by IP.
 996  */
 997 extern void spdsock_update_pending_algs(netstack_t *);
 998 
 999 /*
1000  * IP functions that are called from AH and ESP.
1001  */
1002 extern boolean_t ipsec_outbound_sa(mblk_t *, ip_xmit_attr_t *, uint_t);
1003 extern mblk_t *ipsec_inbound_esp_sa(mblk_t *, ip_recv_attr_t *, esph_t **);
1004 extern mblk_t *ipsec_inbound_ah_sa(mblk_t *, ip_recv_attr_t *, ah_t **);
1005 extern ipsec_policy_t *ipsec_find_policy_head(ipsec_policy_t *,
1006     ipsec_policy_head_t *, int, ipsec_selector_t *);
1007 
1008 /*
1009  * IP dropper init/destroy.
1010  */
1011 void ip_drop_init(ipsec_stack_t *);
1012 void ip_drop_destroy(ipsec_stack_t *);
1013 
1014 /*
1015  * Common functions
1016  */
1017 extern boolean_t ip_addr_match(uint8_t *, int, in6_addr_t *);
1018 extern boolean_t ipsec_label_match(ts_label_t *, ts_label_t *);
1019 
1020 /*
1021  * AH and ESP counters types.
1022  */
1023 typedef uint32_t ah_counter;
1024 typedef uint32_t esp_counter;
1025 
1026 #endif /* _KERNEL */
1027 
1028 #ifdef  __cplusplus
1029 }
1030 #endif
1031 
1032 #endif  /* _INET_IPSEC_IMPL_H */