1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include <sys/atomic.h>
  26 #include <sys/callb.h>
  27 #include <sys/cmn_err.h>
  28 #include <sys/exacct.h>
  29 #include <sys/id_space.h>
  30 #include <sys/kmem.h>
  31 #include <sys/kstat.h>
  32 #include <sys/modhash.h>
  33 #include <sys/mutex.h>
  34 #include <sys/proc.h>
  35 #include <sys/project.h>
  36 #include <sys/rctl.h>
  37 #include <sys/systm.h>
  38 #include <sys/task.h>
  39 #include <sys/time.h>
  40 #include <sys/types.h>
  41 #include <sys/zone.h>
  42 #include <sys/cpuvar.h>
  43 #include <sys/fss.h>
  44 #include <sys/class.h>
  45 #include <sys/project.h>
  46 
  47 /*
  48  * Tasks
  49  *
  50  *   A task is a collection of processes, associated with a common project ID
  51  *   and related by a common initial parent.  The task primarily represents a
  52  *   natural process sequence with known resource usage, although it can also be
  53  *   viewed as a convenient grouping of processes for signal delivery, processor
  54  *   binding, and administrative operations.
  55  *
  56  * Membership and observership
  57  *   We can conceive of situations where processes outside of the task may wish
  58  *   to examine the resource usage of the task.  Similarly, a number of the
  59  *   administrative operations on a task can be performed by processes who are
  60  *   not members of the task.  Accordingly, we must design a locking strategy
  61  *   where observers of the task, who wish to examine or operate on the task,
  62  *   and members of task, who can perform the mentioned operations, as well as
  63  *   leave the task, see a consistent and correct representation of the task at
  64  *   all times.
  65  *
  66  * Locking
  67  *   Because the task membership is a new relation between processes, its
  68  *   locking becomes an additional responsibility of the pidlock/p_lock locking
  69  *   sequence; however, tasks closely resemble sessions and the session locking
  70  *   model is mostly appropriate for the interaction of tasks, processes, and
  71  *   procfs.
  72  *
  73  *   kmutex_t task_hash_lock
  74  *     task_hash_lock is a global lock protecting the contents of the task
  75  *     ID-to-task pointer hash.  Holders of task_hash_lock must not attempt to
  76  *     acquire pidlock or p_lock.
  77  *   uint_t tk_hold_count
  78  *     tk_hold_count, the number of members and observers of the current task,
  79  *     must be manipulated atomically.
  80  *   proc_t *tk_memb_list
  81  *   proc_t *p_tasknext
  82  *   proc_t *p_taskprev
  83  *     The task's membership list is protected by pidlock, and is therefore
  84  *     always acquired before any of its members' p_lock mutexes.  The p_task
  85  *     member of the proc structure is protected by pidlock or p_lock for
  86  *     reading, and by both pidlock and p_lock for modification, as is done for
  87  *     p_sessp.  The key point is that only the process can modify its p_task,
  88  *     and not any entity on the system.  (/proc will use prlock() to prevent
  89  *     the process from leaving, as opposed to pidlock.)
  90  *   kmutex_t tk_usage_lock
  91  *     tk_usage_lock is a per-task lock protecting the contents of the task
  92  *     usage structure and tk_nlwps counter for the task.max-lwps resource
  93  *     control.
  94  */
  95 
  96 int task_hash_size = 256;
  97 static kmutex_t task_hash_lock;
  98 static mod_hash_t *task_hash;
  99 
 100 static id_space_t *taskid_space;        /* global taskid space */
 101 static kmem_cache_t *task_cache;        /* kmem cache for task structures */
 102 
 103 rctl_hndl_t rc_task_lwps;
 104 rctl_hndl_t rc_task_nprocs;
 105 rctl_hndl_t rc_task_cpu_time;
 106 
 107 /*
 108  * Resource usage is committed using task queues; if taskq_dispatch() fails
 109  * due to resource constraints, the task is placed on a list for background
 110  * processing by the task_commit_thread() backup thread.
 111  */
 112 static kmutex_t task_commit_lock;       /* protects list pointers and cv */
 113 static kcondvar_t task_commit_cv;       /* wakeup task_commit_thread */
 114 static task_t *task_commit_head = NULL;
 115 static task_t *task_commit_tail = NULL;
 116 kthread_t *task_commit_thread;
 117 
 118 static void task_commit();
 119 static kstat_t *task_kstat_create(task_t *, zone_t *);
 120 static void task_kstat_delete(task_t *);
 121 
 122 /*
 123  * static rctl_qty_t task_usage_lwps(void *taskp)
 124  *
 125  * Overview
 126  *   task_usage_lwps() is the usage operation for the resource control
 127  *   associated with the number of LWPs in a task.
 128  *
 129  * Return values
 130  *   The number of LWPs in the given task is returned.
 131  *
 132  * Caller's context
 133  *   The p->p_lock must be held across the call.
 134  */
 135 /*ARGSUSED*/
 136 static rctl_qty_t
 137 task_lwps_usage(rctl_t *r, proc_t *p)
 138 {
 139         task_t *t;
 140         rctl_qty_t nlwps;
 141 
 142         ASSERT(MUTEX_HELD(&p->p_lock));
 143 
 144         t = p->p_task;
 145         mutex_enter(&p->p_zone->zone_nlwps_lock);
 146         nlwps = t->tk_nlwps;
 147         mutex_exit(&p->p_zone->zone_nlwps_lock);
 148 
 149         return (nlwps);
 150 }
 151 
 152 /*
 153  * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr,
 154  *   int flags)
 155  *
 156  * Overview
 157  *   task_test_lwps() is the test-if-valid-increment for the resource control
 158  *   for the number of processes in a task.
 159  *
 160  * Return values
 161  *   0 if the threshold limit was not passed, 1 if the limit was passed.
 162  *
 163  * Caller's context
 164  *   p->p_lock must be held across the call.
 165  */
 166 /*ARGSUSED*/
 167 static int
 168 task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
 169     rctl_qty_t incr,
 170     uint_t flags)
 171 {
 172         rctl_qty_t nlwps;
 173 
 174         ASSERT(MUTEX_HELD(&p->p_lock));
 175         ASSERT(e->rcep_t == RCENTITY_TASK);
 176         if (e->rcep_p.task == NULL)
 177                 return (0);
 178 
 179         ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
 180         nlwps = e->rcep_p.task->tk_nlwps;
 181 
 182         if (nlwps + incr > rcntl->rcv_value)
 183                 return (1);
 184 
 185         return (0);
 186 }
 187 
 188 /*ARGSUSED*/
 189 static int
 190 task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) {
 191 
 192         ASSERT(MUTEX_HELD(&p->p_lock));
 193         ASSERT(e->rcep_t == RCENTITY_TASK);
 194         if (e->rcep_p.task == NULL)
 195                 return (0);
 196 
 197         e->rcep_p.task->tk_nlwps_ctl = nv;
 198         return (0);
 199 }
 200 
 201 /*ARGSUSED*/
 202 static rctl_qty_t
 203 task_nprocs_usage(rctl_t *r, proc_t *p)
 204 {
 205         task_t *t;
 206         rctl_qty_t nprocs;
 207 
 208         ASSERT(MUTEX_HELD(&p->p_lock));
 209 
 210         t = p->p_task;
 211         mutex_enter(&p->p_zone->zone_nlwps_lock);
 212         nprocs = t->tk_nprocs;
 213         mutex_exit(&p->p_zone->zone_nlwps_lock);
 214 
 215         return (nprocs);
 216 }
 217 
 218 /*ARGSUSED*/
 219 static int
 220 task_nprocs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
 221     rctl_qty_t incr, uint_t flags)
 222 {
 223         rctl_qty_t nprocs;
 224 
 225         ASSERT(MUTEX_HELD(&p->p_lock));
 226         ASSERT(e->rcep_t == RCENTITY_TASK);
 227         if (e->rcep_p.task == NULL)
 228                 return (0);
 229 
 230         ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
 231         nprocs = e->rcep_p.task->tk_nprocs;
 232 
 233         if (nprocs + incr > rcntl->rcv_value)
 234                 return (1);
 235 
 236         return (0);
 237 }
 238 
 239 /*ARGSUSED*/
 240 static int
 241 task_nprocs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
 242     rctl_qty_t nv) {
 243 
 244         ASSERT(MUTEX_HELD(&p->p_lock));
 245         ASSERT(e->rcep_t == RCENTITY_TASK);
 246         if (e->rcep_p.task == NULL)
 247                 return (0);
 248 
 249         e->rcep_p.task->tk_nprocs_ctl = nv;
 250         return (0);
 251 }
 252 
 253 /*
 254  * static rctl_qty_t task_usage_cpu_secs(void *taskp)
 255  *
 256  * Overview
 257  *   task_usage_cpu_secs() is the usage operation for the resource control
 258  *   associated with the total accrued CPU seconds for a task.
 259  *
 260  * Return values
 261  *   The number of CPU seconds consumed by the task is returned.
 262  *
 263  * Caller's context
 264  *   The given task must be held across the call.
 265  */
 266 /*ARGSUSED*/
 267 static rctl_qty_t
 268 task_cpu_time_usage(rctl_t *r, proc_t *p)
 269 {
 270         task_t *t = p->p_task;
 271 
 272         ASSERT(MUTEX_HELD(&p->p_lock));
 273         return (t->tk_cpu_time);
 274 }
 275 
 276 /*
 277  * int task_cpu_time_incr(task_t *t, rctl_qty_t incr)
 278  *
 279  * Overview
 280  *   task_cpu_time_incr() increments the amount of CPU time used
 281  *   by this task.
 282  *
 283  * Return values
 284  *   1   if a second or more time is accumulated
 285  *   0   otherwise
 286  *
 287  * Caller's context
 288  *   This is called by the clock tick accounting function to charge
 289  *   CPU time to a task.
 290  */
 291 rctl_qty_t
 292 task_cpu_time_incr(task_t *t, rctl_qty_t incr)
 293 {
 294         rctl_qty_t ret = 0;
 295 
 296         mutex_enter(&t->tk_cpu_time_lock);
 297         t->tk_cpu_ticks += incr;
 298         if (t->tk_cpu_ticks >= hz) {
 299                 t->tk_cpu_time += t->tk_cpu_ticks / hz;
 300                 t->tk_cpu_ticks = t->tk_cpu_ticks % hz;
 301                 ret = t->tk_cpu_time;
 302         }
 303         mutex_exit(&t->tk_cpu_time_lock);
 304 
 305         return (ret);
 306 }
 307 
 308 /*
 309  * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr,
 310  *   int flags)
 311  *
 312  * Overview
 313  *   task_test_cpu_secs() is the test-if-valid-increment for the resource
 314  *   control for the total accrued CPU seconds for a task.
 315  *
 316  * Return values
 317  *   0 if the threshold limit was not passed, 1 if the limit was passed.
 318  *
 319  * Caller's context
 320  *   The given task must be held across the call.
 321  */
 322 /*ARGSUSED*/
 323 static int
 324 task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
 325     struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags)
 326 {
 327         ASSERT(MUTEX_HELD(&p->p_lock));
 328         ASSERT(e->rcep_t == RCENTITY_TASK);
 329         if (e->rcep_p.task == NULL)
 330                 return (0);
 331 
 332         if (incr >= rcntl->rcv_value)
 333                 return (1);
 334 
 335         return (0);
 336 }
 337 
 338 static task_t *
 339 task_find(taskid_t id, zoneid_t zoneid)
 340 {
 341         task_t *tk;
 342 
 343         ASSERT(MUTEX_HELD(&task_hash_lock));
 344 
 345         if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id,
 346             (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND ||
 347             (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id))
 348                 return (NULL);
 349 
 350         return (tk);
 351 }
 352 
 353 /*
 354  * task_hold_by_id(), task_hold_by_id_zone()
 355  *
 356  * Overview
 357  *   task_hold_by_id() is used to take a reference on a task by its task id,
 358  *   supporting the various system call interfaces for obtaining resource data,
 359  *   delivering signals, and so forth.
 360  *
 361  * Return values
 362  *   Returns a pointer to the task_t with taskid_t id.  The task is returned
 363  *   with its hold count incremented by one.  Returns NULL if there
 364  *   is no task with the requested id.
 365  *
 366  * Caller's context
 367  *   Caller must not be holding task_hash_lock.  No restrictions on context.
 368  */
 369 task_t *
 370 task_hold_by_id_zone(taskid_t id, zoneid_t zoneid)
 371 {
 372         task_t *tk;
 373 
 374         mutex_enter(&task_hash_lock);
 375         if ((tk = task_find(id, zoneid)) != NULL)
 376                 atomic_inc_32(&tk->tk_hold_count);
 377         mutex_exit(&task_hash_lock);
 378 
 379         return (tk);
 380 }
 381 
 382 task_t *
 383 task_hold_by_id(taskid_t id)
 384 {
 385         zoneid_t zoneid;
 386 
 387         if (INGLOBALZONE(curproc))
 388                 zoneid = ALL_ZONES;
 389         else
 390                 zoneid = getzoneid();
 391         return (task_hold_by_id_zone(id, zoneid));
 392 }
 393 
 394 /*
 395  * void task_hold(task_t *)
 396  *
 397  * Overview
 398  *   task_hold() is used to take an additional reference to the given task.
 399  *
 400  * Return values
 401  *   None.
 402  *
 403  * Caller's context
 404  *   No restriction on context.
 405  */
 406 void
 407 task_hold(task_t *tk)
 408 {
 409         atomic_inc_32(&tk->tk_hold_count);
 410 }
 411 
 412 /*
 413  * void task_rele(task_t *)
 414  *
 415  * Overview
 416  *   task_rele() relinquishes a reference on the given task, which was acquired
 417  *   via task_hold() or task_hold_by_id().  If this is the last member or
 418  *   observer of the task, dispatch it for commitment via the accounting
 419  *   subsystem.
 420  *
 421  * Return values
 422  *   None.
 423  *
 424  * Caller's context
 425  *   Caller must not be holding the task_hash_lock.
 426  */
 427 void
 428 task_rele(task_t *tk)
 429 {
 430         mutex_enter(&task_hash_lock);
 431         if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) {
 432                 mutex_exit(&task_hash_lock);
 433                 return;
 434         }
 435 
 436         ASSERT(tk->tk_nprocs == 0);
 437 
 438         mutex_enter(&tk->tk_zone->zone_nlwps_lock);
 439         tk->tk_proj->kpj_ntasks--;
 440         mutex_exit(&tk->tk_zone->zone_nlwps_lock);
 441 
 442         task_kstat_delete(tk);
 443 
 444         if (mod_hash_destroy(task_hash,
 445             (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0)
 446                 panic("unable to delete task %d", tk->tk_tkid);
 447         mutex_exit(&task_hash_lock);
 448 
 449         /*
 450          * At this point, there are no members or observers of the task, so we
 451          * can safely send it on for commitment to the accounting subsystem.
 452          * The task will be destroyed in task_end() subsequent to commitment.
 453          * Since we may be called with pidlock held, taskq_dispatch() cannot
 454          * sleep. Commitment is handled by a backup thread in case dispatching
 455          * the task fails.
 456          */
 457         if (taskq_dispatch(exacct_queue, exacct_commit_task, tk,
 458             TQ_NOSLEEP | TQ_NOQUEUE) == NULL) {
 459                 mutex_enter(&task_commit_lock);
 460                 if (task_commit_head == NULL) {
 461                         task_commit_head = task_commit_tail = tk;
 462                 } else {
 463                         task_commit_tail->tk_commit_next = tk;
 464                         task_commit_tail = tk;
 465                 }
 466                 cv_signal(&task_commit_cv);
 467                 mutex_exit(&task_commit_lock);
 468         }
 469 }
 470 
 471 /*
 472  * task_t *task_create(projid_t, zone *)
 473  *
 474  * Overview
 475  *   A process constructing a new task calls task_create() to construct and
 476  *   preinitialize the task for the appropriate destination project.  Only one
 477  *   task, the primordial task0, is not created with task_create().
 478  *
 479  * Return values
 480  *   None.
 481  *
 482  * Caller's context
 483  *   Caller's context should be safe for KM_SLEEP allocations.
 484  *   The caller should appropriately bump the kpj_ntasks counter on the
 485  *   project that contains this task.
 486  */
 487 task_t *
 488 task_create(projid_t projid, zone_t *zone)
 489 {
 490         task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP);
 491         task_t *ancestor_tk;
 492         taskid_t tkid;
 493         task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
 494         mod_hash_hndl_t hndl;
 495         rctl_set_t *set = rctl_set_create();
 496         rctl_alloc_gp_t *gp;
 497         rctl_entity_p_t e;
 498 
 499         bzero(tk, sizeof (task_t));
 500 
 501         tk->tk_tkid = tkid = id_alloc(taskid_space);
 502         tk->tk_nlwps = 0;
 503         tk->tk_nlwps_ctl = INT_MAX;
 504         tk->tk_nprocs = 0;
 505         tk->tk_nprocs_ctl = INT_MAX;
 506         tk->tk_usage = tu;
 507         tk->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
 508         tk->tk_proj = project_hold_by_id(projid, zone, PROJECT_HOLD_INSERT);
 509         tk->tk_flags = TASK_NORMAL;
 510         tk->tk_commit_next = NULL;
 511 
 512         /*
 513          * Copy ancestor task's resource controls.
 514          */
 515         zone_task_hold(zone);
 516         mutex_enter(&curproc->p_lock);
 517         ancestor_tk = curproc->p_task;
 518         task_hold(ancestor_tk);
 519         tk->tk_zone = zone;
 520         mutex_exit(&curproc->p_lock);
 521 
 522         for (;;) {
 523                 gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls);
 524 
 525                 mutex_enter(&ancestor_tk->tk_rctls->rcs_lock);
 526                 if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp))
 527                         break;
 528 
 529                 mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
 530 
 531                 rctl_prealloc_destroy(gp);
 532         }
 533 
 534         /*
 535          * At this point, curproc does not have the appropriate linkage
 536          * through the task to the project. So, rctl_set_dup should only
 537          * copy the rctls, and leave the callbacks for later.
 538          */
 539         e.rcep_p.task = tk;
 540         e.rcep_t = RCENTITY_TASK;
 541         tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e,
 542             set, gp, RCD_DUP);
 543         mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
 544 
 545         rctl_prealloc_destroy(gp);
 546 
 547         /*
 548          * Record the ancestor task's ID for use by extended accounting.
 549          */
 550         tu->tu_anctaskid = ancestor_tk->tk_tkid;
 551         task_rele(ancestor_tk);
 552 
 553         /*
 554          * Put new task structure in the hash table.
 555          */
 556         (void) mod_hash_reserve(task_hash, &hndl);
 557         mutex_enter(&task_hash_lock);
 558         ASSERT(task_find(tkid, zone->zone_id) == NULL);
 559         if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid,
 560             (mod_hash_val_t *)tk, hndl) != 0) {
 561                 mod_hash_cancel(task_hash, &hndl);
 562                 panic("unable to insert task %d(%p)", tkid, (void *)tk);
 563         }
 564         mutex_exit(&task_hash_lock);
 565 
 566         tk->tk_nprocs_kstat = task_kstat_create(tk, zone);
 567         return (tk);
 568 }
 569 
 570 /*
 571  * void task_attach(task_t *, proc_t *)
 572  *
 573  * Overview
 574  *   task_attach() is used to attach a process to a task; this operation is only
 575  *   performed as a result of a fork() or settaskid() system call.  The proc_t's
 576  *   p_tasknext and p_taskprev fields will be set such that the proc_t is a
 577  *   member of the doubly-linked list of proc_t's that make up the task.
 578  *
 579  * Return values
 580  *   None.
 581  *
 582  * Caller's context
 583  *   pidlock and p->p_lock must be held on entry.
 584  */
 585 void
 586 task_attach(task_t *tk, proc_t *p)
 587 {
 588         proc_t *first, *prev;
 589         ASSERT(tk != NULL);
 590         ASSERT(p != NULL);
 591         ASSERT(MUTEX_HELD(&pidlock));
 592         ASSERT(MUTEX_HELD(&p->p_lock));
 593 
 594         if (tk->tk_memb_list == NULL) {
 595                 p->p_tasknext = p;
 596                 p->p_taskprev = p;
 597         } else {
 598                 first = tk->tk_memb_list;
 599                 prev = first->p_taskprev;
 600                 first->p_taskprev = p;
 601                 p->p_tasknext = first;
 602                 p->p_taskprev = prev;
 603                 prev->p_tasknext = p;
 604         }
 605         tk->tk_memb_list = p;
 606         task_hold(tk);
 607         p->p_task = tk;
 608 }
 609 
 610 /*
 611  * task_begin()
 612  *
 613  * Overview
 614  *   A process constructing a new task calls task_begin() to initialize the
 615  *   task, by attaching itself as a member.
 616  *
 617  * Return values
 618  *   None.
 619  *
 620  * Caller's context
 621  *   pidlock and p_lock must be held across the call to task_begin().
 622  */
 623 void
 624 task_begin(task_t *tk, proc_t *p)
 625 {
 626         timestruc_t ts;
 627         task_usage_t *tu;
 628         rctl_entity_p_t e;
 629 
 630         ASSERT(MUTEX_HELD(&pidlock));
 631         ASSERT(MUTEX_HELD(&p->p_lock));
 632 
 633         mutex_enter(&tk->tk_usage_lock);
 634         tu = tk->tk_usage;
 635         gethrestime(&ts);
 636         tu->tu_startsec = (uint64_t)ts.tv_sec;
 637         tu->tu_startnsec = (uint64_t)ts.tv_nsec;
 638         mutex_exit(&tk->tk_usage_lock);
 639 
 640         /*
 641          * Join process to the task as a member.
 642          */
 643         task_attach(tk, p);
 644 
 645         /*
 646          * Now that the linkage from process to task is complete, do the
 647          * required callback for the task rctl set.
 648          */
 649         e.rcep_p.task = tk;
 650         e.rcep_t = RCENTITY_TASK;
 651         (void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL,
 652             RCD_CALLBACK);
 653 }
 654 
 655 /*
 656  * void task_detach(proc_t *)
 657  *
 658  * Overview
 659  *   task_detach() removes the specified process from its task.  task_detach
 660  *   sets the process's task membership to NULL, in anticipation of a final exit
 661  *   or of joining a new task.  Because task_rele() requires a context safe for
 662  *   KM_SLEEP allocations, a task_detach() is followed by a subsequent
 663  *   task_rele() once appropriate context is available.
 664  *
 665  *   Because task_detach() involves relinquishing the process's membership in
 666  *   the project, any observational rctls the process may have had on the task
 667  *   or project are destroyed.
 668  *
 669  * Return values
 670  *   None.
 671  *
 672  * Caller's context
 673  *   pidlock and p_lock held across task_detach().
 674  */
 675 void
 676 task_detach(proc_t *p)
 677 {
 678         task_t *tk = p->p_task;
 679 
 680         ASSERT(MUTEX_HELD(&pidlock));
 681         ASSERT(MUTEX_HELD(&p->p_lock));
 682         ASSERT(p->p_task != NULL);
 683         ASSERT(tk->tk_memb_list != NULL);
 684 
 685         if (tk->tk_memb_list == p)
 686                 tk->tk_memb_list = p->p_tasknext;
 687         if (tk->tk_memb_list == p)
 688                 tk->tk_memb_list = NULL;
 689         p->p_taskprev->p_tasknext = p->p_tasknext;
 690         p->p_tasknext->p_taskprev = p->p_taskprev;
 691 
 692         rctl_set_tearoff(p->p_task->tk_rctls, p);
 693         rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p);
 694 
 695         p->p_task = NULL;
 696         p->p_tasknext = p->p_taskprev = NULL;
 697 }
 698 
 699 /*
 700  * task_change(task_t *, proc_t *)
 701  *
 702  * Overview
 703  *   task_change() removes the specified process from its current task.  The
 704  *   process is then attached to the specified task.  This routine is called
 705  *   from settaskid() when process is being moved to a new task.
 706  *
 707  * Return values
 708  *   None.
 709  *
 710  * Caller's context
 711  *   pidlock and p_lock held across task_change()
 712  */
 713 void
 714 task_change(task_t *newtk, proc_t *p)
 715 {
 716         task_t *oldtk = p->p_task;
 717 
 718         ASSERT(MUTEX_HELD(&pidlock));
 719         ASSERT(MUTEX_HELD(&p->p_lock));
 720         ASSERT(oldtk != NULL);
 721         ASSERT(oldtk->tk_memb_list != NULL);
 722 
 723         mutex_enter(&oldtk->tk_zone->zone_nlwps_lock);
 724         oldtk->tk_nlwps -= p->p_lwpcnt;
 725         oldtk->tk_nprocs--;
 726         mutex_exit(&oldtk->tk_zone->zone_nlwps_lock);
 727 
 728         mutex_enter(&newtk->tk_zone->zone_nlwps_lock);
 729         newtk->tk_nlwps += p->p_lwpcnt;
 730         newtk->tk_nprocs++;
 731         mutex_exit(&newtk->tk_zone->zone_nlwps_lock);
 732 
 733         task_detach(p);
 734         task_begin(newtk, p);
 735         exacct_move_mstate(p, oldtk, newtk);
 736 }
 737 
 738 /*
 739  * task_end()
 740  *
 741  * Overview
 742  *   task_end() contains the actions executed once the final member of
 743  *   a task has released the task, and all actions connected with the task, such
 744  *   as committing an accounting record to a file, are completed.  It is called
 745  *   by the known last consumer of the task information.  Additionally,
 746  *   task_end() must never refer to any process in the system.
 747  *
 748  * Return values
 749  *   None.
 750  *
 751  * Caller's context
 752  *   No restrictions on context, beyond that given above.
 753  */
 754 void
 755 task_end(task_t *tk)
 756 {
 757         ASSERT(tk->tk_hold_count == 0);
 758 
 759         project_rele(tk->tk_proj);
 760         kmem_free(tk->tk_usage, sizeof (task_usage_t));
 761         kmem_free(tk->tk_inherited, sizeof (task_usage_t));
 762         if (tk->tk_prevusage != NULL)
 763                 kmem_free(tk->tk_prevusage, sizeof (task_usage_t));
 764         if (tk->tk_zoneusage != NULL)
 765                 kmem_free(tk->tk_zoneusage, sizeof (task_usage_t));
 766         rctl_set_free(tk->tk_rctls);
 767         id_free(taskid_space, tk->tk_tkid);
 768         zone_task_rele(tk->tk_zone);
 769         kmem_cache_free(task_cache, tk);
 770 }
 771 
 772 static void
 773 changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf,
 774     void *zonebuf)
 775 {
 776         kproject_t *oldkpj;
 777         kthread_t *t;
 778 
 779         ASSERT(MUTEX_HELD(&pidlock));
 780         ASSERT(MUTEX_HELD(&p->p_lock));
 781 
 782         if ((t = p->p_tlist) != NULL) {
 783                 do {
 784                         (void) project_hold(kpj);
 785 
 786                         thread_lock(t);
 787                         oldkpj = ttoproj(t);
 788 
 789                         /*
 790                          * Kick this thread so that he doesn't sit
 791                          * on a wrong wait queue.
 792                          */
 793                         if (ISWAITING(t))
 794                                 setrun_locked(t);
 795 
 796                         /*
 797                          * The thread wants to go on the project wait queue, but
 798                          * the waitq is changing.
 799                          */
 800                         if (t->t_schedflag & TS_PROJWAITQ)
 801                                 t->t_schedflag &= ~ TS_PROJWAITQ;
 802 
 803                         t->t_proj = kpj;
 804                         t->t_pre_sys = 1;            /* For cred update */
 805                         thread_unlock(t);
 806                         fss_changeproj(t, kpj, zone, projbuf, zonebuf);
 807 
 808                         project_rele(oldkpj);
 809                 } while ((t = t->t_forw) != p->p_tlist);
 810         }
 811 }
 812 
 813 /*
 814  * task_join()
 815  *
 816  * Overview
 817  *   task_join() contains the actions that must be executed when the first
 818  *   member (curproc) of a newly created task joins it.  It may never fail.
 819  *
 820  *   The caller must make sure holdlwps() is called so that all other lwps are
 821  *   stopped prior to calling this function.
 822  *
 823  *   NB: It returns with curproc->p_lock held.
 824  *
 825  * Return values
 826  *   Pointer to the old task.
 827  *
 828  * Caller's context
 829  *   cpu_lock must be held entering the function.  It will acquire pidlock,
 830  *   p_crlock and p_lock during execution.
 831  */
 832 task_t *
 833 task_join(task_t *tk, uint_t flags)
 834 {
 835         proc_t *p = ttoproc(curthread);
 836         task_t *prev_tk;
 837         void *projbuf, *zonebuf;
 838         zone_t *zone = tk->tk_zone;
 839         projid_t projid = tk->tk_proj->kpj_id;
 840         cred_t *oldcr;
 841 
 842         /*
 843          * We can't know for sure if holdlwps() was called, but we can check to
 844          * ensure we're single-threaded.
 845          */
 846         ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1);
 847 
 848         /*
 849          * Changing the credential is always hard because we cannot
 850          * allocate memory when holding locks but we don't know whether
 851          * we need to change it.  We first get a reference to the current
 852          * cred if we need to change it.  Then we create a credential
 853          * with an updated project id.  Finally we install it, first
 854          * releasing the reference we had on the p_cred at the time we
 855          * acquired the lock the first time and later we release the
 856          * reference to p_cred at the time we acquired the lock the
 857          * second time.
 858          */
 859         mutex_enter(&p->p_crlock);
 860         if (crgetprojid(p->p_cred) == projid)
 861                 oldcr = NULL;
 862         else
 863                 crhold(oldcr = p->p_cred);
 864         mutex_exit(&p->p_crlock);
 865 
 866         if (oldcr != NULL) {
 867                 cred_t *newcr = crdup(oldcr);
 868                 crsetprojid(newcr, projid);
 869                 crfree(oldcr);
 870 
 871                 mutex_enter(&p->p_crlock);
 872                 oldcr = p->p_cred;
 873                 p->p_cred = newcr;
 874                 mutex_exit(&p->p_crlock);
 875                 crfree(oldcr);
 876         }
 877 
 878         /*
 879          * Make sure that the number of processor sets is constant
 880          * across this operation.
 881          */
 882         ASSERT(MUTEX_HELD(&cpu_lock));
 883 
 884         projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ);
 885         zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE);
 886 
 887         mutex_enter(&pidlock);
 888         mutex_enter(&p->p_lock);
 889 
 890         prev_tk = p->p_task;
 891         task_change(tk, p);
 892 
 893         /*
 894          * Now move threads one by one to their new project.
 895          */
 896         changeproj(p, tk->tk_proj, zone, projbuf, zonebuf);
 897         if (flags & TASK_FINAL)
 898                 p->p_task->tk_flags |= TASK_FINAL;
 899 
 900         mutex_exit(&pidlock);
 901 
 902         fss_freebuf(zonebuf, FSS_ALLOC_ZONE);
 903         fss_freebuf(projbuf, FSS_ALLOC_PROJ);
 904         return (prev_tk);
 905 }
 906 
 907 /*
 908  * rctl ops vectors
 909  */
 910 static rctl_ops_t task_lwps_ops = {
 911         rcop_no_action,
 912         task_lwps_usage,
 913         task_lwps_set,
 914         task_lwps_test
 915 };
 916 
 917 static rctl_ops_t task_procs_ops = {
 918         rcop_no_action,
 919         task_nprocs_usage,
 920         task_nprocs_set,
 921         task_nprocs_test
 922 };
 923 
 924 static rctl_ops_t task_cpu_time_ops = {
 925         rcop_no_action,
 926         task_cpu_time_usage,
 927         rcop_no_set,
 928         task_cpu_time_test
 929 };
 930 
 931 /*ARGSUSED*/
 932 /*
 933  * void task_init(void)
 934  *
 935  * Overview
 936  *   task_init() initializes task-related hashes, caches, and the task id
 937  *   space.  Additionally, task_init() establishes p0 as a member of task0.
 938  *   Called by main().
 939  *
 940  * Return values
 941  *   None.
 942  *
 943  * Caller's context
 944  *   task_init() must be called prior to MP startup.
 945  */
 946 void
 947 task_init(void)
 948 {
 949         proc_t *p = &p0;
 950         mod_hash_hndl_t hndl;
 951         rctl_set_t *set;
 952         rctl_alloc_gp_t *gp;
 953         rctl_entity_p_t e;
 954 
 955         /*
 956          * Initialize task_cache and taskid_space.
 957          */
 958         task_cache = kmem_cache_create("task_cache", sizeof (task_t),
 959             0, NULL, NULL, NULL, NULL, NULL, 0);
 960         taskid_space = id_space_create("taskid_space", 0, MAX_TASKID);
 961 
 962         /*
 963          * Initialize task hash table.
 964          */
 965         task_hash = mod_hash_create_idhash("task_hash", task_hash_size,
 966             mod_hash_null_valdtor);
 967 
 968         /*
 969          * Initialize task-based rctls.
 970          */
 971         rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK,
 972             RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
 973             &task_lwps_ops);
 974         rc_task_nprocs = rctl_register("task.max-processes", RCENTITY_TASK,
 975             RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
 976             &task_procs_ops);
 977         rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK,
 978             RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER |
 979             RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE |
 980             RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX,
 981             UINT64_MAX, &task_cpu_time_ops);
 982 
 983         /*
 984          * Create task0 and place p0 in it as a member.
 985          */
 986         task0p = kmem_cache_alloc(task_cache, KM_SLEEP);
 987         bzero(task0p, sizeof (task_t));
 988 
 989         task0p->tk_tkid = id_alloc(taskid_space);
 990         task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
 991         task0p->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
 992         task0p->tk_proj = project_hold_by_id(0, &zone0,
 993             PROJECT_HOLD_INSERT);
 994         task0p->tk_flags = TASK_NORMAL;
 995         task0p->tk_nlwps = p->p_lwpcnt;
 996         task0p->tk_nprocs = 1;
 997         task0p->tk_zone = global_zone;
 998         task0p->tk_commit_next = NULL;
 999 
1000         set = rctl_set_create();
1001         gp = rctl_set_init_prealloc(RCENTITY_TASK);
1002         mutex_enter(&curproc->p_lock);
1003         e.rcep_p.task = task0p;
1004         e.rcep_t = RCENTITY_TASK;
1005         task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp);
1006         mutex_exit(&curproc->p_lock);
1007         rctl_prealloc_destroy(gp);
1008 
1009         (void) mod_hash_reserve(task_hash, &hndl);
1010         mutex_enter(&task_hash_lock);
1011         ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL);
1012         if (mod_hash_insert_reserve(task_hash,
1013             (mod_hash_key_t)(uintptr_t)task0p->tk_tkid,
1014             (mod_hash_val_t *)task0p, hndl) != 0) {
1015                 mod_hash_cancel(task_hash, &hndl);
1016                 panic("unable to insert task %d(%p)", task0p->tk_tkid,
1017                     (void *)task0p);
1018         }
1019         mutex_exit(&task_hash_lock);
1020 
1021         task0p->tk_memb_list = p;
1022 
1023         task0p->tk_nprocs_kstat = task_kstat_create(task0p, task0p->tk_zone);
1024 
1025         /*
1026          * Initialize task pointers for p0, including doubly linked list of task
1027          * members.
1028          */
1029         p->p_task = task0p;
1030         p->p_taskprev = p->p_tasknext = p;
1031         task_hold(task0p);
1032 }
1033 
1034 static int
1035 task_nprocs_kstat_update(kstat_t *ksp, int rw)
1036 {
1037         task_t *tk = ksp->ks_private;
1038         task_kstat_t *ktk = ksp->ks_data;
1039 
1040         if (rw == KSTAT_WRITE)
1041                 return (EACCES);
1042 
1043         ktk->ktk_usage.value.ui64 = tk->tk_nprocs;
1044         ktk->ktk_value.value.ui64 = tk->tk_nprocs_ctl;
1045         return (0);
1046 }
1047 
1048 static kstat_t *
1049 task_kstat_create(task_t *tk, zone_t *zone)
1050 {
1051         kstat_t *ksp;
1052         task_kstat_t *ktk;
1053         char *zonename = zone->zone_name;
1054 
1055         ksp = rctl_kstat_create_task(tk, "nprocs", KSTAT_TYPE_NAMED,
1056             sizeof (task_kstat_t) / sizeof (kstat_named_t),
1057             KSTAT_FLAG_VIRTUAL);
1058 
1059         if (ksp == NULL)
1060                 return (NULL);
1061 
1062         ktk = ksp->ks_data = kmem_alloc(sizeof (task_kstat_t), KM_SLEEP);
1063         ksp->ks_data_size += strlen(zonename) + 1;
1064         kstat_named_init(&ktk->ktk_zonename, "zonename", KSTAT_DATA_STRING);
1065         kstat_named_setstr(&ktk->ktk_zonename, zonename);
1066         kstat_named_init(&ktk->ktk_usage, "usage", KSTAT_DATA_UINT64);
1067         kstat_named_init(&ktk->ktk_value, "value", KSTAT_DATA_UINT64);
1068         ksp->ks_update = task_nprocs_kstat_update;
1069         ksp->ks_private = tk;
1070         kstat_install(ksp);
1071 
1072         return (ksp);
1073 }
1074 
1075 static void
1076 task_kstat_delete(task_t *tk)
1077 {
1078         void *data;
1079 
1080         if (tk->tk_nprocs_kstat != NULL) {
1081                 data = tk->tk_nprocs_kstat->ks_data;
1082                 kstat_delete(tk->tk_nprocs_kstat);
1083                 kmem_free(data, sizeof (task_kstat_t));
1084                 tk->tk_nprocs_kstat = NULL;
1085         }
1086 }
1087 
1088 void
1089 task_commit_thread_init()
1090 {
1091         mutex_init(&task_commit_lock, NULL, MUTEX_DEFAULT, NULL);
1092         cv_init(&task_commit_cv, NULL, CV_DEFAULT, NULL);
1093         task_commit_thread = thread_create(NULL, 0, task_commit, NULL, 0,
1094             &p0, TS_RUN, minclsyspri);
1095 }
1096 
1097 /*
1098  * Backup thread to commit task resource usage when taskq_dispatch() fails.
1099  */
1100 static void
1101 task_commit()
1102 {
1103         callb_cpr_t cprinfo;
1104 
1105         CALLB_CPR_INIT(&cprinfo, &task_commit_lock, callb_generic_cpr,
1106             "task_commit_thread");
1107 
1108         mutex_enter(&task_commit_lock);
1109 
1110         for (;;) {
1111                 while (task_commit_head == NULL) {
1112                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1113                         cv_wait(&task_commit_cv, &task_commit_lock);
1114                         CALLB_CPR_SAFE_END(&cprinfo, &task_commit_lock);
1115                 }
1116                 while (task_commit_head != NULL) {
1117                         task_t *tk;
1118 
1119                         tk = task_commit_head;
1120                         task_commit_head = task_commit_head->tk_commit_next;
1121                         if (task_commit_head == NULL)
1122                                 task_commit_tail = NULL;
1123                         mutex_exit(&task_commit_lock);
1124                         exacct_commit_task(tk);
1125                         mutex_enter(&task_commit_lock);
1126                 }
1127         }
1128 }