1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  *  Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*      Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
  26 /*        All Rights Reserved   */
  27 
  28 /*
  29  * Portions of this source code were derived from Berkeley 4.3 BSD
  30  * under license from the Regents of the University of California.
  31  */
  32 
  33 /*
  34  * svc_cots.c
  35  * Server side for connection-oriented RPC in the kernel.
  36  *
  37  */
  38 
  39 #include <sys/param.h>
  40 #include <sys/types.h>
  41 #include <sys/sysmacros.h>
  42 #include <sys/file.h>
  43 #include <sys/stream.h>
  44 #include <sys/strsubr.h>
  45 #include <sys/strsun.h>
  46 #include <sys/stropts.h>
  47 #include <sys/tiuser.h>
  48 #include <sys/timod.h>
  49 #include <sys/tihdr.h>
  50 #include <sys/fcntl.h>
  51 #include <sys/errno.h>
  52 #include <sys/kmem.h>
  53 #include <sys/systm.h>
  54 #include <sys/debug.h>
  55 #include <sys/cmn_err.h>
  56 #include <sys/kstat.h>
  57 #include <sys/vtrace.h>
  58 
  59 #include <rpc/types.h>
  60 #include <rpc/xdr.h>
  61 #include <rpc/auth.h>
  62 #include <rpc/rpc_msg.h>
  63 #include <rpc/svc.h>
  64 #include <inet/ip.h>
  65 
  66 #define COTS_MAX_ALLOCSIZE      2048
  67 #define MSG_OFFSET              128     /* offset of call into the mblk */
  68 #define RM_HDR_SIZE             4       /* record mark header size */
  69 
  70 /*
  71  * Routines exported through ops vector.
  72  */
  73 static bool_t           svc_cots_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
  74 static bool_t           svc_cots_ksend(SVCXPRT *, struct rpc_msg *);
  75 static bool_t           svc_cots_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
  76 static bool_t           svc_cots_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
  77 static void             svc_cots_kdestroy(SVCMASTERXPRT *);
  78 static int              svc_cots_kdup(struct svc_req *, caddr_t, int,
  79                                 struct dupreq **, bool_t *);
  80 static void             svc_cots_kdupdone(struct dupreq *, caddr_t,
  81                                 void (*)(), int, int);
  82 static int32_t          *svc_cots_kgetres(SVCXPRT *, int);
  83 static void             svc_cots_kfreeres(SVCXPRT *);
  84 static void             svc_cots_kclone_destroy(SVCXPRT *);
  85 static void             svc_cots_kstart(SVCMASTERXPRT *);
  86 static void             svc_cots_ktattrs(SVCXPRT *, int, void **);
  87 
  88 /*
  89  * Server transport operations vector.
  90  */
  91 struct svc_ops svc_cots_op = {
  92         svc_cots_krecv,         /* Get requests */
  93         svc_cots_kgetargs,      /* Deserialize arguments */
  94         svc_cots_ksend,         /* Send reply */
  95         svc_cots_kfreeargs,     /* Free argument data space */
  96         svc_cots_kdestroy,      /* Destroy transport handle */
  97         svc_cots_kdup,          /* Check entry in dup req cache */
  98         svc_cots_kdupdone,      /* Mark entry in dup req cache as done */
  99         svc_cots_kgetres,       /* Get pointer to response buffer */
 100         svc_cots_kfreeres,      /* Destroy pre-serialized response header */
 101         svc_cots_kclone_destroy, /* Destroy a clone xprt */
 102         svc_cots_kstart,        /* Tell `ready-to-receive' to rpcmod */
 103         NULL,                   /* Transport specific clone xprt */
 104         svc_cots_ktattrs        /* Transport Attributes */
 105 };
 106 
 107 /*
 108  * Master transport private data.
 109  * Kept in xprt->xp_p2.
 110  */
 111 struct cots_master_data {
 112         char    *cmd_src_addr;  /* client's address */
 113         int     cmd_xprt_started; /* flag for clone routine to call */
 114                                 /* rpcmod's start routine. */
 115         struct rpc_cots_server *cmd_stats;      /* stats for zone */
 116 };
 117 
 118 /*
 119  * Transport private data.
 120  * Kept in clone_xprt->xp_p2buf.
 121  */
 122 typedef struct cots_data {
 123         mblk_t  *cd_mp;         /* pre-allocated reply message */
 124         mblk_t  *cd_req_mp;     /* request message */
 125 } cots_data_t;
 126 
 127 /*
 128  * Server statistics
 129  * NOTE: This structure type is duplicated in the NFS fast path.
 130  */
 131 static const struct rpc_cots_server {
 132         kstat_named_t   rscalls;
 133         kstat_named_t   rsbadcalls;
 134         kstat_named_t   rsnullrecv;
 135         kstat_named_t   rsbadlen;
 136         kstat_named_t   rsxdrcall;
 137         kstat_named_t   rsdupchecks;
 138         kstat_named_t   rsdupreqs;
 139 } cots_rsstat_tmpl = {
 140         { "calls",      KSTAT_DATA_UINT64 },
 141         { "badcalls",   KSTAT_DATA_UINT64 },
 142         { "nullrecv",   KSTAT_DATA_UINT64 },
 143         { "badlen",     KSTAT_DATA_UINT64 },
 144         { "xdrcall",    KSTAT_DATA_UINT64 },
 145         { "dupchecks",  KSTAT_DATA_UINT64 },
 146         { "dupreqs",    KSTAT_DATA_UINT64 }
 147 };
 148 
 149 #define CLONE2STATS(clone_xprt) \
 150         ((struct cots_master_data *)(clone_xprt)->xp_master->xp_p2)->cmd_stats
 151 #define RSSTAT_INCR(s, x)       \
 152         atomic_inc_64(&(s)->x.value.ui64)
 153 
 154 /*
 155  * Pointer to a transport specific `ready to receive' function in rpcmod
 156  * (set from rpcmod).
 157  */
 158 void    (*mir_start)(queue_t *);
 159 uint_t  *svc_max_msg_sizep;
 160 
 161 /*
 162  * the address size of the underlying transport can sometimes be
 163  * unknown (tinfo->ADDR_size == -1).  For this case, it is
 164  * necessary to figure out what the size is so the correct amount
 165  * of data is allocated.  This is an itterative process:
 166  *      1. take a good guess (use T_MINADDRSIZE)
 167  *      2. try it.
 168  *      3. if it works then everything is ok
 169  *      4. if the error is ENAMETOLONG, double the guess
 170  *      5. go back to step 2.
 171  */
 172 #define T_UNKNOWNADDRSIZE       (-1)
 173 #define T_MINADDRSIZE   32
 174 
 175 /*
 176  * Create a transport record.
 177  * The transport record, output buffer, and private data structure
 178  * are allocated.  The output buffer is serialized into using xdrmem.
 179  * There is one transport record per user process which implements a
 180  * set of services.
 181  */
 182 static kmutex_t cots_kcreate_lock;
 183 
 184 int
 185 svc_cots_kcreate(file_t *fp, uint_t max_msgsize, struct T_info_ack *tinfo,
 186     SVCMASTERXPRT **nxprt)
 187 {
 188         struct cots_master_data *cmd;
 189         int err, retval;
 190         SVCMASTERXPRT *xprt;
 191         struct rpcstat *rpcstat;
 192         struct T_addr_ack *ack_p;
 193         struct strioctl getaddr;
 194 
 195         if (nxprt == NULL)
 196                 return (EINVAL);
 197 
 198         rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
 199         ASSERT(rpcstat != NULL);
 200 
 201         xprt = kmem_zalloc(sizeof (SVCMASTERXPRT), KM_SLEEP);
 202 
 203         cmd = kmem_zalloc(sizeof (*cmd) + sizeof (*ack_p)
 204             + (2 * sizeof (sin6_t)), KM_SLEEP);
 205 
 206         ack_p = (struct T_addr_ack *)&cmd[1];
 207 
 208         if ((tinfo->TIDU_size > COTS_MAX_ALLOCSIZE) ||
 209             (tinfo->TIDU_size <= 0))
 210                 xprt->xp_msg_size = COTS_MAX_ALLOCSIZE;
 211         else {
 212                 xprt->xp_msg_size = tinfo->TIDU_size -
 213                     (tinfo->TIDU_size % BYTES_PER_XDR_UNIT);
 214         }
 215 
 216         xprt->xp_ops = &svc_cots_op;
 217         xprt->xp_p2 = (caddr_t)cmd;
 218         cmd->cmd_xprt_started = 0;
 219         cmd->cmd_stats = rpcstat->rpc_cots_server;
 220 
 221         getaddr.ic_cmd = TI_GETINFO;
 222         getaddr.ic_timout = -1;
 223         getaddr.ic_len = sizeof (*ack_p) + (2 * sizeof (sin6_t));
 224         getaddr.ic_dp = (char *)ack_p;
 225         ack_p->PRIM_type = T_ADDR_REQ;
 226 
 227         err = strioctl(fp->f_vnode, I_STR, (intptr_t)&getaddr,
 228             0, K_TO_K, CRED(), &retval);
 229         if (err) {
 230                 kmem_free(cmd, sizeof (*cmd) + sizeof (*ack_p) +
 231                     (2 * sizeof (sin6_t)));
 232                 kmem_free(xprt, sizeof (SVCMASTERXPRT));
 233                 return (err);
 234         }
 235 
 236         xprt->xp_rtaddr.maxlen = ack_p->REMADDR_length;
 237         xprt->xp_rtaddr.len = ack_p->REMADDR_length;
 238         cmd->cmd_src_addr = xprt->xp_rtaddr.buf =
 239             (char *)ack_p + ack_p->REMADDR_offset;
 240 
 241         xprt->xp_lcladdr.maxlen = ack_p->LOCADDR_length;
 242         xprt->xp_lcladdr.len = ack_p->LOCADDR_length;
 243         xprt->xp_lcladdr.buf = (char *)ack_p + ack_p->LOCADDR_offset;
 244 
 245         /*
 246          * If the current sanity check size in rpcmod is smaller
 247          * than the size needed for this xprt, then increase
 248          * the sanity check.
 249          */
 250         if (max_msgsize != 0 && svc_max_msg_sizep &&
 251             max_msgsize > *svc_max_msg_sizep) {
 252 
 253                 /* This check needs a lock */
 254                 mutex_enter(&cots_kcreate_lock);
 255                 if (svc_max_msg_sizep && max_msgsize > *svc_max_msg_sizep)
 256                         *svc_max_msg_sizep = max_msgsize;
 257                 mutex_exit(&cots_kcreate_lock);
 258         }
 259 
 260         *nxprt = xprt;
 261 
 262         return (0);
 263 }
 264 
 265 /*
 266  * Destroy a master transport record.
 267  * Frees the space allocated for a transport record.
 268  */
 269 static void
 270 svc_cots_kdestroy(SVCMASTERXPRT *xprt)
 271 {
 272         struct cots_master_data *cmd = (struct cots_master_data *)xprt->xp_p2;
 273 
 274         ASSERT(cmd);
 275 
 276         if (xprt->xp_netid)
 277                 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
 278         if (xprt->xp_addrmask.maxlen)
 279                 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
 280 
 281         mutex_destroy(&xprt->xp_req_lock);
 282         mutex_destroy(&xprt->xp_thread_lock);
 283 
 284         kmem_free(cmd, sizeof (*cmd) + sizeof (struct T_addr_ack) +
 285             (2 * sizeof (sin6_t)));
 286 
 287         kmem_free(xprt, sizeof (SVCMASTERXPRT));
 288 }
 289 
 290 /*
 291  * svc_tli_kcreate() calls this function at the end to tell
 292  * rpcmod that the transport is ready to receive requests.
 293  */
 294 static void
 295 svc_cots_kstart(SVCMASTERXPRT *xprt)
 296 {
 297         struct cots_master_data *cmd = (struct cots_master_data *)xprt->xp_p2;
 298 
 299         if (cmd->cmd_xprt_started == 0) {
 300                 /*
 301                  * Acquire the xp_req_lock in order to use xp_wq
 302                  * safely (we don't want to qenable a queue that has
 303                  * already been closed).
 304                  */
 305                 mutex_enter(&xprt->xp_req_lock);
 306                 if (cmd->cmd_xprt_started == 0 &&
 307                     xprt->xp_wq != NULL) {
 308                         (*mir_start)(xprt->xp_wq);
 309                         cmd->cmd_xprt_started = 1;
 310                 }
 311                 mutex_exit(&xprt->xp_req_lock);
 312         }
 313 }
 314 
 315 /*
 316  * Transport-type specific part of svc_xprt_cleanup().
 317  */
 318 static void
 319 svc_cots_kclone_destroy(SVCXPRT *clone_xprt)
 320 {
 321         cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
 322 
 323         if (cd->cd_req_mp) {
 324                 freemsg(cd->cd_req_mp);
 325                 cd->cd_req_mp = (mblk_t *)0;
 326         }
 327         ASSERT(cd->cd_mp == NULL);
 328 }
 329 
 330 /*
 331  * Transport Attributes.
 332  */
 333 static void
 334 svc_cots_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
 335 {
 336         *tattr = NULL;
 337 
 338         switch (attrflag) {
 339         case SVC_TATTR_ADDRMASK:
 340                 *tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
 341         }
 342 }
 343 
 344 /*
 345  * Receive rpc requests.
 346  * Checks if the message is intact, and deserializes the call packet.
 347  */
 348 static bool_t
 349 svc_cots_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
 350 {
 351         cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
 352         XDR *xdrs = &clone_xprt->xp_xdrin;
 353         struct rpc_cots_server *stats = CLONE2STATS(clone_xprt);
 354 
 355         TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KRECV_START,
 356             "svc_cots_krecv_start:");
 357         RPCLOG(4, "svc_cots_krecv_start clone_xprt = %p:\n",
 358             (void *)clone_xprt);
 359 
 360         RSSTAT_INCR(stats, rscalls);
 361 
 362         if (mp->b_datap->db_type != M_DATA) {
 363                 RPCLOG(16, "svc_cots_krecv bad db_type %d\n",
 364                     mp->b_datap->db_type);
 365                 goto bad;
 366         }
 367 
 368         xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
 369 
 370         TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
 371             "xdr_callmsg_start:");
 372         RPCLOG0(4, "xdr_callmsg_start:\n");
 373         if (!xdr_callmsg(xdrs, msg)) {
 374                 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
 375                     "xdr_callmsg_end:(%S)", "bad");
 376                 RPCLOG0(1, "svc_cots_krecv xdr_callmsg failure\n");
 377                 RSSTAT_INCR(stats, rsxdrcall);
 378                 goto bad;
 379         }
 380         TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
 381             "xdr_callmsg_end:(%S)", "good");
 382 
 383         clone_xprt->xp_xid = msg->rm_xid;
 384         cd->cd_req_mp = mp;
 385 
 386         TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KRECV_END,
 387             "svc_cots_krecv_end:(%S)", "good");
 388         RPCLOG0(4, "svc_cots_krecv_end:good\n");
 389         return (TRUE);
 390 
 391 bad:
 392         if (mp)
 393                 freemsg(mp);
 394 
 395         RSSTAT_INCR(stats, rsbadcalls);
 396         TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KRECV_END,
 397             "svc_cots_krecv_end:(%S)", "bad");
 398         return (FALSE);
 399 }
 400 
 401 /*
 402  * Send rpc reply.
 403  */
 404 static bool_t
 405 svc_cots_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
 406 {
 407         /* LINTED pointer alignment */
 408         cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
 409         XDR *xdrs = &(clone_xprt->xp_xdrout);
 410         int retval = FALSE;
 411         mblk_t *mp;
 412         xdrproc_t xdr_results;
 413         caddr_t xdr_location;
 414         bool_t has_args;
 415 
 416         TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KSEND_START,
 417             "svc_cots_ksend_start:");
 418 
 419         /*
 420          * If there is a result procedure specified in the reply message,
 421          * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
 422          * We need to make sure it won't be processed twice, so we null
 423          * it for xdr_replymsg here.
 424          */
 425         has_args = FALSE;
 426         if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
 427             msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
 428                 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
 429                         has_args = TRUE;
 430                         xdr_location = msg->acpted_rply.ar_results.where;
 431                         msg->acpted_rply.ar_results.proc = xdr_void;
 432                         msg->acpted_rply.ar_results.where = NULL;
 433                 }
 434         }
 435 
 436         mp = cd->cd_mp;
 437         if (mp) {
 438                 /*
 439                  * The program above pre-allocated an mblk and put
 440                  * the data in place.
 441                  */
 442                 cd->cd_mp = (mblk_t *)NULL;
 443                 if (!(xdr_replymsg_body(xdrs, msg) &&
 444                     (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
 445                     xdr_results, xdr_location)))) {
 446                         RPCLOG0(1, "svc_cots_ksend: "
 447                             "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
 448                         freemsg(mp);
 449                         goto out;
 450                 }
 451         } else {
 452                 int     len;
 453                 int     mpsize;
 454 
 455                 /*
 456                  * Leave space for protocol headers.
 457                  */
 458                 len = MSG_OFFSET + clone_xprt->xp_msg_size;
 459 
 460                 /*
 461                  * Allocate an initial mblk for the response data.
 462                  */
 463                 while (!(mp = allocb(len, BPRI_LO))) {
 464                         RPCLOG0(16, "svc_cots_ksend: allocb failed failed\n");
 465                         if (strwaitbuf(len, BPRI_LO)) {
 466                                 TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KSEND_END,
 467                                     "svc_cots_ksend_end:(%S)", "strwaitbuf");
 468                                 RPCLOG0(1,
 469                                     "svc_cots_ksend: strwaitbuf failed\n");
 470                                 goto out;
 471                         }
 472                 }
 473 
 474                 /*
 475                  * Initialize the XDR decode stream.  Additional mblks
 476                  * will be allocated if necessary.  They will be TIDU
 477                  * sized.
 478                  */
 479                 xdrmblk_init(xdrs, mp, XDR_ENCODE, clone_xprt->xp_msg_size);
 480                 mpsize = MBLKSIZE(mp);
 481                 ASSERT(mpsize >= len);
 482                 ASSERT(mp->b_rptr == mp->b_datap->db_base);
 483 
 484                 /*
 485                  * If the size of mblk is not appreciably larger than what we
 486                  * asked, then resize the mblk to exactly len bytes. Reason for
 487                  * this: suppose len is 1600 bytes, the tidu is 1460 bytes
 488                  * (from TCP over ethernet), and the arguments to RPC require
 489                  * 2800 bytes. Ideally we want the protocol to render two
 490                  * ~1400 byte segments over the wire. If allocb() gives us a 2k
 491                  * mblk, and we allocate a second mblk for the rest, the
 492                  * protocol module may generate 3 segments over the wire:
 493                  * 1460 bytes for the first, 448 (2048 - 1600) for the 2nd, and
 494                  * 892 for the 3rd. If we "waste" 448 bytes in the first mblk,
 495                  * the XDR encoding will generate two ~1400 byte mblks, and the
 496                  * protocol module is more likely to produce properly sized
 497                  * segments.
 498                  */
 499                 if ((mpsize >> 1) <= len) {
 500                         mp->b_rptr += (mpsize - len);
 501                 }
 502 
 503                 /*
 504                  * Adjust b_rptr to reserve space for the non-data protocol
 505                  * headers that any downstream modules might like to add, and
 506                  * for the record marking header.
 507                  */
 508                 mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE);
 509 
 510                 XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base));
 511                 ASSERT(mp->b_wptr == mp->b_rptr);
 512 
 513                 msg->rm_xid = clone_xprt->xp_xid;
 514 
 515                 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
 516                     "xdr_replymsg_start:");
 517                 if (!(xdr_replymsg(xdrs, msg) &&
 518                     (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
 519                     xdr_results, xdr_location)))) {
 520                         TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
 521                             "xdr_replymsg_end:(%S)", "bad");
 522                         freemsg(mp);
 523                         RPCLOG0(1, "svc_cots_ksend: xdr_replymsg/SVCAUTH_WRAP "
 524                             "failed\n");
 525                         goto out;
 526                 }
 527                 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
 528                     "xdr_replymsg_end:(%S)", "good");
 529         }
 530 
 531         put(clone_xprt->xp_wq, mp);
 532         retval = TRUE;
 533 
 534 out:
 535         /*
 536          * This is completely disgusting.  If public is set it is
 537          * a pointer to a structure whose first field is the address
 538          * of the function to free that structure and any related
 539          * stuff.  (see rrokfree in nfs_xdr.c).
 540          */
 541         if (xdrs->x_public) {
 542                 /* LINTED pointer alignment */
 543                 (**((int (**)())xdrs->x_public))(xdrs->x_public);
 544         }
 545 
 546         TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KSEND_END,
 547             "svc_cots_ksend_end:(%S)", "done");
 548         return (retval);
 549 }
 550 
 551 /*
 552  * Deserialize arguments.
 553  */
 554 static bool_t
 555 svc_cots_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
 556     caddr_t args_ptr)
 557 {
 558         return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
 559             xdr_args, args_ptr));
 560 }
 561 
 562 static bool_t
 563 svc_cots_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
 564     caddr_t args_ptr)
 565 {
 566         cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
 567         mblk_t *mp;
 568         bool_t retval;
 569 
 570         /*
 571          * It is important to call the XDR routine before
 572          * freeing the request mblk.  Structures in the
 573          * XDR data may point into the mblk and require that
 574          * the memory be intact during the free routine.
 575          */
 576         if (args_ptr) {
 577                 /* LINTED pointer alignment */
 578                 XDR     *xdrs = &clone_xprt->xp_xdrin;
 579 
 580                 xdrs->x_op = XDR_FREE;
 581                 retval = (*xdr_args)(xdrs, args_ptr);
 582         } else
 583                 retval = TRUE;
 584 
 585         if ((mp = cd->cd_req_mp) != NULL) {
 586                 cd->cd_req_mp = (mblk_t *)0;
 587                 freemsg(mp);
 588         }
 589 
 590         return (retval);
 591 }
 592 
 593 static int32_t *
 594 svc_cots_kgetres(SVCXPRT *clone_xprt, int size)
 595 {
 596         /* LINTED pointer alignment */
 597         cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
 598         XDR *xdrs = &clone_xprt->xp_xdrout;
 599         mblk_t *mp;
 600         int32_t *buf;
 601         struct rpc_msg rply;
 602         int len;
 603         int mpsize;
 604 
 605         /*
 606          * Leave space for protocol headers.
 607          */
 608         len = MSG_OFFSET + clone_xprt->xp_msg_size;
 609 
 610         /*
 611          * Allocate an initial mblk for the response data.
 612          */
 613         while ((mp = allocb(len, BPRI_LO)) == NULL) {
 614                 if (strwaitbuf(len, BPRI_LO))
 615                         return (FALSE);
 616         }
 617 
 618         /*
 619          * Initialize the XDR decode stream.  Additional mblks
 620          * will be allocated if necessary.  They will be TIDU
 621          * sized.
 622          */
 623         xdrmblk_init(xdrs, mp, XDR_ENCODE, clone_xprt->xp_msg_size);
 624         mpsize = MBLKSIZE(mp);
 625         ASSERT(mpsize >= len);
 626         ASSERT(mp->b_rptr == mp->b_datap->db_base);
 627 
 628         /*
 629          * If the size of mblk is not appreciably larger than what we
 630          * asked, then resize the mblk to exactly len bytes. Reason for
 631          * this: suppose len is 1600 bytes, the tidu is 1460 bytes
 632          * (from TCP over ethernet), and the arguments to RPC require
 633          * 2800 bytes. Ideally we want the protocol to render two
 634          * ~1400 byte segments over the wire. If allocb() gives us a 2k
 635          * mblk, and we allocate a second mblk for the rest, the
 636          * protocol module may generate 3 segments over the wire:
 637          * 1460 bytes for the first, 448 (2048 - 1600) for the 2nd, and
 638          * 892 for the 3rd. If we "waste" 448 bytes in the first mblk,
 639          * the XDR encoding will generate two ~1400 byte mblks, and the
 640          * protocol module is more likely to produce properly sized
 641          * segments.
 642          */
 643         if ((mpsize >> 1) <= len) {
 644                 mp->b_rptr += (mpsize - len);
 645         }
 646 
 647         /*
 648          * Adjust b_rptr to reserve space for the non-data protocol
 649          * headers that any downstream modules might like to add, and
 650          * for the record marking header.
 651          */
 652         mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE);
 653 
 654         XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base));
 655         ASSERT(mp->b_wptr == mp->b_rptr);
 656 
 657         /*
 658          * Assume a successful RPC since most of them are.
 659          */
 660         rply.rm_xid = clone_xprt->xp_xid;
 661         rply.rm_direction = REPLY;
 662         rply.rm_reply.rp_stat = MSG_ACCEPTED;
 663         rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
 664         rply.acpted_rply.ar_stat = SUCCESS;
 665 
 666         if (!xdr_replymsg_hdr(xdrs, &rply)) {
 667                 freeb(mp);
 668                 return (NULL);
 669         }
 670 
 671 
 672         buf = XDR_INLINE(xdrs, size);
 673         if (buf == NULL) {
 674                 ASSERT(cd->cd_mp == NULL);
 675                 freemsg(mp);
 676         } else {
 677                 cd->cd_mp = mp;
 678         }
 679         return (buf);
 680 }
 681 
 682 static void
 683 svc_cots_kfreeres(SVCXPRT *clone_xprt)
 684 {
 685         cots_data_t *cd;
 686         mblk_t *mp;
 687 
 688         cd = (cots_data_t *)clone_xprt->xp_p2buf;
 689         if ((mp = cd->cd_mp) != NULL) {
 690                 cd->cd_mp = (mblk_t *)NULL;
 691                 freemsg(mp);
 692         }
 693 }
 694 
 695 /*
 696  * the dup cacheing routines below provide a cache of non-failure
 697  * transaction id's.  rpc service routines can use this to detect
 698  * retransmissions and re-send a non-failure response.
 699  */
 700 
 701 /*
 702  * MAXDUPREQS is the number of cached items.  It should be adjusted
 703  * to the service load so that there is likely to be a response entry
 704  * when the first retransmission comes in.
 705  */
 706 #define MAXDUPREQS      1024
 707 
 708 /*
 709  * This should be appropriately scaled to MAXDUPREQS.
 710  */
 711 #define DRHASHSZ        257
 712 
 713 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
 714 #define XIDHASH(xid)    ((xid) & (DRHASHSZ - 1))
 715 #else
 716 #define XIDHASH(xid)    ((xid) % DRHASHSZ)
 717 #endif
 718 #define DRHASH(dr)      XIDHASH((dr)->dr_xid)
 719 #define REQTOXID(req)   ((req)->rq_xprt->xp_xid)
 720 
 721 static int      cotsndupreqs = 0;
 722 int     cotsmaxdupreqs = MAXDUPREQS;
 723 static kmutex_t cotsdupreq_lock;
 724 static struct dupreq *cotsdrhashtbl[DRHASHSZ];
 725 static int      cotsdrhashstat[DRHASHSZ];
 726 
 727 static void unhash(struct dupreq *);
 728 
 729 /*
 730  * cotsdrmru points to the head of a circular linked list in lru order.
 731  * cotsdrmru->dr_next == drlru
 732  */
 733 struct dupreq *cotsdrmru;
 734 
 735 /*
 736  * PSARC 2003/523 Contract Private Interface
 737  * svc_cots_kdup
 738  * Changes must be reviewed by Solaris File Sharing
 739  * Changes must be communicated to contract-2003-523@sun.com
 740  *
 741  * svc_cots_kdup searches the request cache and returns 0 if the
 742  * request is not found in the cache.  If it is found, then it
 743  * returns the state of the request (in progress or done) and
 744  * the status or attributes that were part of the original reply.
 745  *
 746  * If DUP_DONE (there is a duplicate) svc_cots_kdup copies over the
 747  * value of the response. In that case, also return in *dupcachedp
 748  * whether the response free routine is cached in the dupreq - in which case
 749  * the caller should not be freeing it, because it will be done later
 750  * in the svc_cots_kdup code when the dupreq is reused.
 751  */
 752 static int
 753 svc_cots_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
 754         bool_t *dupcachedp)
 755 {
 756         struct rpc_cots_server *stats = CLONE2STATS(req->rq_xprt);
 757         struct dupreq *dr;
 758         uint32_t xid;
 759         uint32_t drhash;
 760         int status;
 761 
 762         xid = REQTOXID(req);
 763         mutex_enter(&cotsdupreq_lock);
 764         RSSTAT_INCR(stats, rsdupchecks);
 765         /*
 766          * Check to see whether an entry already exists in the cache.
 767          */
 768         dr = cotsdrhashtbl[XIDHASH(xid)];
 769         while (dr != NULL) {
 770                 if (dr->dr_xid == xid &&
 771                     dr->dr_proc == req->rq_proc &&
 772                     dr->dr_prog == req->rq_prog &&
 773                     dr->dr_vers == req->rq_vers &&
 774                     dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
 775                     bcmp((caddr_t)dr->dr_addr.buf,
 776                     (caddr_t)req->rq_xprt->xp_rtaddr.buf,
 777                     dr->dr_addr.len) == 0) {
 778                         status = dr->dr_status;
 779                         if (status == DUP_DONE) {
 780                                 bcopy(dr->dr_resp.buf, res, size);
 781                                 if (dupcachedp != NULL)
 782                                         *dupcachedp = (dr->dr_resfree != NULL);
 783                                 TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KDUP_DONE,
 784                                     "svc_cots_kdup: DUP_DONE");
 785                         } else {
 786                                 dr->dr_status = DUP_INPROGRESS;
 787                                 *drpp = dr;
 788                                 TRACE_0(TR_FAC_KRPC,
 789                                     TR_SVC_COTS_KDUP_INPROGRESS,
 790                                     "svc_cots_kdup: DUP_INPROGRESS");
 791                         }
 792                         RSSTAT_INCR(stats, rsdupreqs);
 793                         mutex_exit(&cotsdupreq_lock);
 794                         return (status);
 795                 }
 796                 dr = dr->dr_chain;
 797         }
 798 
 799         /*
 800          * There wasn't an entry, either allocate a new one or recycle
 801          * an old one.
 802          */
 803         if (cotsndupreqs < cotsmaxdupreqs) {
 804                 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
 805                 if (dr == NULL) {
 806                         mutex_exit(&cotsdupreq_lock);
 807                         return (DUP_ERROR);
 808                 }
 809                 dr->dr_resp.buf = NULL;
 810                 dr->dr_resp.maxlen = 0;
 811                 dr->dr_addr.buf = NULL;
 812                 dr->dr_addr.maxlen = 0;
 813                 if (cotsdrmru) {
 814                         dr->dr_next = cotsdrmru->dr_next;
 815                         cotsdrmru->dr_next = dr;
 816                 } else {
 817                         dr->dr_next = dr;
 818                 }
 819                 cotsndupreqs++;
 820         } else {
 821                 dr = cotsdrmru->dr_next;
 822                 while (dr->dr_status == DUP_INPROGRESS) {
 823                         dr = dr->dr_next;
 824                         if (dr == cotsdrmru->dr_next) {
 825                                 cmn_err(CE_WARN, "svc_cots_kdup no slots free");
 826                                 mutex_exit(&cotsdupreq_lock);
 827                                 return (DUP_ERROR);
 828                         }
 829                 }
 830                 unhash(dr);
 831                 if (dr->dr_resfree) {
 832                         (*dr->dr_resfree)(dr->dr_resp.buf);
 833                 }
 834         }
 835         dr->dr_resfree = NULL;
 836         cotsdrmru = dr;
 837 
 838         dr->dr_xid = REQTOXID(req);
 839         dr->dr_prog = req->rq_prog;
 840         dr->dr_vers = req->rq_vers;
 841         dr->dr_proc = req->rq_proc;
 842         if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
 843                 if (dr->dr_addr.buf != NULL)
 844                         kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
 845                 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
 846                 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP);
 847                 if (dr->dr_addr.buf == NULL) {
 848                         dr->dr_addr.maxlen = 0;
 849                         dr->dr_status = DUP_DROP;
 850                         mutex_exit(&cotsdupreq_lock);
 851                         return (DUP_ERROR);
 852                 }
 853         }
 854         dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
 855         bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
 856         if (dr->dr_resp.maxlen < size) {
 857                 if (dr->dr_resp.buf != NULL)
 858                         kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
 859                 dr->dr_resp.maxlen = (unsigned int)size;
 860                 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
 861                 if (dr->dr_resp.buf == NULL) {
 862                         dr->dr_resp.maxlen = 0;
 863                         dr->dr_status = DUP_DROP;
 864                         mutex_exit(&cotsdupreq_lock);
 865                         return (DUP_ERROR);
 866                 }
 867         }
 868         dr->dr_status = DUP_INPROGRESS;
 869 
 870         drhash = (uint32_t)DRHASH(dr);
 871         dr->dr_chain = cotsdrhashtbl[drhash];
 872         cotsdrhashtbl[drhash] = dr;
 873         cotsdrhashstat[drhash]++;
 874         mutex_exit(&cotsdupreq_lock);
 875         *drpp = dr;
 876         return (DUP_NEW);
 877 }
 878 
 879 /*
 880  * PSARC 2003/523 Contract Private Interface
 881  * svc_cots_kdupdone
 882  * Changes must be reviewed by Solaris File Sharing
 883  * Changes must be communicated to contract-2003-523@sun.com
 884  *
 885  * svc_cots_kdupdone marks the request done (DUP_DONE or DUP_DROP)
 886  * and stores the response.
 887  */
 888 static void
 889 svc_cots_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
 890         int size, int status)
 891 {
 892         ASSERT(dr->dr_resfree == NULL);
 893         if (status == DUP_DONE) {
 894                 bcopy(res, dr->dr_resp.buf, size);
 895                 dr->dr_resfree = dis_resfree;
 896         }
 897         dr->dr_status = status;
 898 }
 899 
 900 /*
 901  * This routine expects that the mutex, cotsdupreq_lock, is already held.
 902  */
 903 static void
 904 unhash(struct dupreq *dr)
 905 {
 906         struct dupreq *drt;
 907         struct dupreq *drtprev = NULL;
 908         uint32_t drhash;
 909 
 910         ASSERT(MUTEX_HELD(&cotsdupreq_lock));
 911 
 912         drhash = (uint32_t)DRHASH(dr);
 913         drt = cotsdrhashtbl[drhash];
 914         while (drt != NULL) {
 915                 if (drt == dr) {
 916                         cotsdrhashstat[drhash]--;
 917                         if (drtprev == NULL) {
 918                                 cotsdrhashtbl[drhash] = drt->dr_chain;
 919                         } else {
 920                                 drtprev->dr_chain = drt->dr_chain;
 921                         }
 922                         return;
 923                 }
 924                 drtprev = drt;
 925                 drt = drt->dr_chain;
 926         }
 927 }
 928 
 929 void
 930 svc_cots_stats_init(zoneid_t zoneid, struct rpc_cots_server **statsp)
 931 {
 932         *statsp = (struct rpc_cots_server *)rpcstat_zone_init_common(zoneid,
 933             "unix", "rpc_cots_server", (const kstat_named_t *)&cots_rsstat_tmpl,
 934             sizeof (cots_rsstat_tmpl));
 935 }
 936 
 937 void
 938 svc_cots_stats_fini(zoneid_t zoneid, struct rpc_cots_server **statsp)
 939 {
 940         rpcstat_zone_fini_common(zoneid, "unix", "rpc_cots_server");
 941         kmem_free(*statsp, sizeof (cots_rsstat_tmpl));
 942 }
 943 
 944 void
 945 svc_cots_init(void)
 946 {
 947         /*
 948          * Check to make sure that the cots private data will fit into
 949          * the stack buffer allocated by svc_run.  The ASSERT is a safety
 950          * net if the cots_data_t structure ever changes.
 951          */
 952         /*CONSTANTCONDITION*/
 953         ASSERT(sizeof (cots_data_t) <= SVC_P2LEN);
 954 
 955         mutex_init(&cots_kcreate_lock, NULL, MUTEX_DEFAULT, NULL);
 956         mutex_init(&cotsdupreq_lock, NULL, MUTEX_DEFAULT, NULL);
 957 }