5255 uts shouldn't open-code ISP2

   1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 
  27 #include <sys/sysmacros.h>
  28 #include <sys/zfs_context.h>
  29 #include <sys/fm/fs/zfs.h>
  30 #include <sys/spa.h>
  31 #include <sys/txg.h>
  32 #include <sys/spa_impl.h>
  33 #include <sys/vdev_impl.h>
  34 #include <sys/zio_impl.h>
  35 #include <sys/zio_compress.h>
  36 #include <sys/zio_checksum.h>
  37 #include <sys/dmu_objset.h>
  38 #include <sys/arc.h>
  39 #include <sys/ddt.h>
  40 #include <sys/blkptr.h>
  41 #include <sys/zfeature.h>
  42 
  43 /*
  44  * ==========================================================================
  45  * I/O type descriptions
  46  * ==========================================================================
  47  */
  48 const char *zio_type_name[ZIO_TYPES] = {
  49         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  50         "zio_ioctl"
  51 };
  52 
  53 /*
  54  * ==========================================================================
  55  * I/O kmem caches
  56  * ==========================================================================
  57  */
  58 kmem_cache_t *zio_cache;
  59 kmem_cache_t *zio_link_cache;
  60 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  61 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  62 
  63 #ifdef _KERNEL
  64 extern vmem_t *zio_alloc_arena;
  65 #endif
  66 
  67 /*
  68  * The following actions directly effect the spa's sync-to-convergence logic.
  69  * The values below define the sync pass when we start performing the action.
  70  * Care should be taken when changing these values as they directly impact
  71  * spa_sync() performance. Tuning these values may introduce subtle performance
  72  * pathologies and should only be done in the context of performance analysis.
  73  * These tunables will eventually be removed and replaced with #defines once
  74  * enough analysis has been done to determine optimal values.
  75  *
  76  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
  77  * regular blocks are not deferred.
  78  */
  79 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
  80 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
  81 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
  82 
  83 /*
  84  * An allocating zio is one that either currently has the DVA allocate
  85  * stage set or will have it later in its lifetime.
  86  */
  87 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
  88 
  89 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
  90 
  91 #ifdef ZFS_DEBUG
  92 int zio_buf_debug_limit = 16384;
  93 #else
  94 int zio_buf_debug_limit = 0;
  95 #endif
  96 
  97 void
  98 zio_init(void)
  99 {
 100         size_t c;
 101         vmem_t *data_alloc_arena = NULL;
 102 
 103 #ifdef _KERNEL
 104         data_alloc_arena = zio_alloc_arena;
 105 #endif
 106         zio_cache = kmem_cache_create("zio_cache",
 107             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 108         zio_link_cache = kmem_cache_create("zio_link_cache",
 109             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 110 
 111         /*
 112          * For small buffers, we want a cache for each multiple of
 113          * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
 114          * for each quarter-power of 2.  For large buffers, we want
 115          * a cache for each multiple of PAGESIZE.
 116          */
 117         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 118                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 119                 size_t p2 = size;
 120                 size_t align = 0;
 121                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 122 
 123                 while (!ISP2(p2))
 124                         p2 &= p2 - 1;
 125 
 126 #ifndef _KERNEL
 127                 /*
 128                  * If we are using watchpoints, put each buffer on its own page,
 129                  * to eliminate the performance overhead of trapping to the
 130                  * kernel when modifying a non-watched buffer that shares the
 131                  * page with a watched buffer.
 132                  */
 133                 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
 134                         continue;
 135 #endif
 136                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 137                         align = SPA_MINBLOCKSIZE;
 138                 } else if (IS_P2ALIGNED(size, PAGESIZE)) {
 139                         align = PAGESIZE;
 140                 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
 141                         align = p2 >> 2;
 142                 }
 143 
 144                 if (align != 0) {
 145                         char name[36];
 146                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 147                         zio_buf_cache[c] = kmem_cache_create(name, size,
 148                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 149 
 150                         /*
 151                          * Since zio_data bufs do not appear in crash dumps, we
 152                          * pass KMC_NOTOUCH so that no allocator metadata is
 153                          * stored with the buffers.
 154                          */
 155                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 156                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 157                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 158                             cflags | KMC_NOTOUCH);
 159                 }
 160         }
 161 
 162         while (--c != 0) {
 163                 ASSERT(zio_buf_cache[c] != NULL);
 164                 if (zio_buf_cache[c - 1] == NULL)
 165                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 166 
 167                 ASSERT(zio_data_buf_cache[c] != NULL);
 168                 if (zio_data_buf_cache[c - 1] == NULL)
 169                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 170         }
 171 
 172         zio_inject_init();
 173 }
 174 
 175 void
 176 zio_fini(void)
 177 {
 178         size_t c;
 179         kmem_cache_t *last_cache = NULL;
 180         kmem_cache_t *last_data_cache = NULL;
 181 
 182         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 183                 if (zio_buf_cache[c] != last_cache) {
 184                         last_cache = zio_buf_cache[c];
 185                         kmem_cache_destroy(zio_buf_cache[c]);
 186                 }
 187                 zio_buf_cache[c] = NULL;
 188 
 189                 if (zio_data_buf_cache[c] != last_data_cache) {
 190                         last_data_cache = zio_data_buf_cache[c];
 191                         kmem_cache_destroy(zio_data_buf_cache[c]);
 192                 }
 193                 zio_data_buf_cache[c] = NULL;
 194         }
 195 
 196         kmem_cache_destroy(zio_link_cache);
 197         kmem_cache_destroy(zio_cache);
 198 
 199         zio_inject_fini();
 200 }
 201 
 202 /*
 203  * ==========================================================================
 204  * Allocate and free I/O buffers
 205  * ==========================================================================
 206  */
 207 
 208 /*
 209  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 210  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 211  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 212  * excess / transient data in-core during a crashdump.
 213  */
 214 void *
 215 zio_buf_alloc(size_t size)
 216 {
 217         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 218 
 219         ASSERT3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 220 
 221         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 222 }
 223 
 224 /*
 225  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 226  * crashdump if the kernel panics.  This exists so that we will limit the amount
 227  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 228  * of kernel heap dumped to disk when the kernel panics)
 229  */
 230 void *
 231 zio_data_buf_alloc(size_t size)
 232 {
 233         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 234 
 235         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 236 
 237         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 238 }
 239 
 240 void
 241 zio_buf_free(void *buf, size_t size)
 242 {
 243         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 244 
 245         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 246 
 247         kmem_cache_free(zio_buf_cache[c], buf);
 248 }
 249 
 250 void
 251 zio_data_buf_free(void *buf, size_t size)
 252 {
 253         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 254 
 255         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 256 
 257         kmem_cache_free(zio_data_buf_cache[c], buf);
 258 }
 259 
 260 /*
 261  * ==========================================================================
 262  * Push and pop I/O transform buffers
 263  * ==========================================================================
 264  */
 265 static void
 266 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
 267         zio_transform_func_t *transform)
 268 {
 269         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 270 
 271         zt->zt_orig_data = zio->io_data;
 272         zt->zt_orig_size = zio->io_size;
 273         zt->zt_bufsize = bufsize;
 274         zt->zt_transform = transform;
 275 
 276         zt->zt_next = zio->io_transform_stack;
 277         zio->io_transform_stack = zt;
 278 
 279         zio->io_data = data;
 280         zio->io_size = size;
 281 }
 282 
 283 static void
 284 zio_pop_transforms(zio_t *zio)
 285 {
 286         zio_transform_t *zt;
 287 
 288         while ((zt = zio->io_transform_stack) != NULL) {
 289                 if (zt->zt_transform != NULL)
 290                         zt->zt_transform(zio,
 291                             zt->zt_orig_data, zt->zt_orig_size);
 292 
 293                 if (zt->zt_bufsize != 0)
 294                         zio_buf_free(zio->io_data, zt->zt_bufsize);
 295 
 296                 zio->io_data = zt->zt_orig_data;
 297                 zio->io_size = zt->zt_orig_size;
 298                 zio->io_transform_stack = zt->zt_next;
 299 
 300                 kmem_free(zt, sizeof (zio_transform_t));
 301         }
 302 }
 303 
 304 /*
 305  * ==========================================================================
 306  * I/O transform callbacks for subblocks and decompression
 307  * ==========================================================================
 308  */
 309 static void
 310 zio_subblock(zio_t *zio, void *data, uint64_t size)
 311 {
 312         ASSERT(zio->io_size > size);
 313 
 314         if (zio->io_type == ZIO_TYPE_READ)
 315                 bcopy(zio->io_data, data, size);
 316 }
 317 
 318 static void
 319 zio_decompress(zio_t *zio, void *data, uint64_t size)
 320 {
 321         if (zio->io_error == 0 &&
 322             zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 323             zio->io_data, data, zio->io_size, size) != 0)
 324                 zio->io_error = SET_ERROR(EIO);
 325 }
 326 
 327 /*
 328  * ==========================================================================
 329  * I/O parent/child relationships and pipeline interlocks
 330  * ==========================================================================
 331  */
 332 /*
 333  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
 334  *        continue calling these functions until they return NULL.
 335  *        Otherwise, the next caller will pick up the list walk in
 336  *        some indeterminate state.  (Otherwise every caller would
 337  *        have to pass in a cookie to keep the state represented by
 338  *        io_walk_link, which gets annoying.)
 339  */
 340 zio_t *
 341 zio_walk_parents(zio_t *cio)
 342 {
 343         zio_link_t *zl = cio->io_walk_link;
 344         list_t *pl = &cio->io_parent_list;
 345 
 346         zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
 347         cio->io_walk_link = zl;
 348 
 349         if (zl == NULL)
 350                 return (NULL);
 351 
 352         ASSERT(zl->zl_child == cio);
 353         return (zl->zl_parent);
 354 }
 355 
 356 zio_t *
 357 zio_walk_children(zio_t *pio)
 358 {
 359         zio_link_t *zl = pio->io_walk_link;
 360         list_t *cl = &pio->io_child_list;
 361 
 362         zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
 363         pio->io_walk_link = zl;
 364 
 365         if (zl == NULL)
 366                 return (NULL);
 367 
 368         ASSERT(zl->zl_parent == pio);
 369         return (zl->zl_child);
 370 }
 371 
 372 zio_t *
 373 zio_unique_parent(zio_t *cio)
 374 {
 375         zio_t *pio = zio_walk_parents(cio);
 376 
 377         VERIFY(zio_walk_parents(cio) == NULL);
 378         return (pio);
 379 }
 380 
 381 void
 382 zio_add_child(zio_t *pio, zio_t *cio)
 383 {
 384         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 385 
 386         /*
 387          * Logical I/Os can have logical, gang, or vdev children.
 388          * Gang I/Os can have gang or vdev children.
 389          * Vdev I/Os can only have vdev children.
 390          * The following ASSERT captures all of these constraints.
 391          */
 392         ASSERT(cio->io_child_type <= pio->io_child_type);
 393 
 394         zl->zl_parent = pio;
 395         zl->zl_child = cio;
 396 
 397         mutex_enter(&cio->io_lock);
 398         mutex_enter(&pio->io_lock);
 399 
 400         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 401 
 402         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 403                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 404 
 405         list_insert_head(&pio->io_child_list, zl);
 406         list_insert_head(&cio->io_parent_list, zl);
 407 
 408         pio->io_child_count++;
 409         cio->io_parent_count++;
 410 
 411         mutex_exit(&pio->io_lock);
 412         mutex_exit(&cio->io_lock);
 413 }
 414 
 415 static void
 416 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 417 {
 418         ASSERT(zl->zl_parent == pio);
 419         ASSERT(zl->zl_child == cio);
 420 
 421         mutex_enter(&cio->io_lock);
 422         mutex_enter(&pio->io_lock);
 423 
 424         list_remove(&pio->io_child_list, zl);
 425         list_remove(&cio->io_parent_list, zl);
 426 
 427         pio->io_child_count--;
 428         cio->io_parent_count--;
 429 
 430         mutex_exit(&pio->io_lock);
 431         mutex_exit(&cio->io_lock);
 432 
 433         kmem_cache_free(zio_link_cache, zl);
 434 }
 435 
 436 static boolean_t
 437 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
 438 {
 439         uint64_t *countp = &zio->io_children[child][wait];
 440         boolean_t waiting = B_FALSE;
 441 
 442         mutex_enter(&zio->io_lock);
 443         ASSERT(zio->io_stall == NULL);
 444         if (*countp != 0) {
 445                 zio->io_stage >>= 1;
 446                 zio->io_stall = countp;
 447                 waiting = B_TRUE;
 448         }
 449         mutex_exit(&zio->io_lock);
 450 
 451         return (waiting);
 452 }
 453 
 454 static void
 455 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 456 {
 457         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 458         int *errorp = &pio->io_child_error[zio->io_child_type];
 459 
 460         mutex_enter(&pio->io_lock);
 461         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 462                 *errorp = zio_worst_error(*errorp, zio->io_error);
 463         pio->io_reexecute |= zio->io_reexecute;
 464         ASSERT3U(*countp, >, 0);
 465 
 466         (*countp)--;
 467 
 468         if (*countp == 0 && pio->io_stall == countp) {
 469                 pio->io_stall = NULL;
 470                 mutex_exit(&pio->io_lock);
 471                 zio_execute(pio);
 472         } else {
 473                 mutex_exit(&pio->io_lock);
 474         }
 475 }
 476 
 477 static void
 478 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 479 {
 480         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 481                 zio->io_error = zio->io_child_error[c];
 482 }
 483 
 484 /*
 485  * ==========================================================================
 486  * Create the various types of I/O (read, write, free, etc)
 487  * ==========================================================================
 488  */
 489 static zio_t *
 490 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 491     void *data, uint64_t size, zio_done_func_t *done, void *private,
 492     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
 493     vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
 494     enum zio_stage stage, enum zio_stage pipeline)
 495 {
 496         zio_t *zio;
 497 
 498         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 499         ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
 500         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 501 
 502         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 503         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 504         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 505 
 506         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 507         bzero(zio, sizeof (zio_t));
 508 
 509         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 510         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 511 
 512         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 513             offsetof(zio_link_t, zl_parent_node));
 514         list_create(&zio->io_child_list, sizeof (zio_link_t),
 515             offsetof(zio_link_t, zl_child_node));
 516 
 517         if (vd != NULL)
 518                 zio->io_child_type = ZIO_CHILD_VDEV;
 519         else if (flags & ZIO_FLAG_GANG_CHILD)
 520                 zio->io_child_type = ZIO_CHILD_GANG;
 521         else if (flags & ZIO_FLAG_DDT_CHILD)
 522                 zio->io_child_type = ZIO_CHILD_DDT;
 523         else
 524                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 525 
 526         if (bp != NULL) {
 527                 zio->io_bp = (blkptr_t *)bp;
 528                 zio->io_bp_copy = *bp;
 529                 zio->io_bp_orig = *bp;
 530                 if (type != ZIO_TYPE_WRITE ||
 531                     zio->io_child_type == ZIO_CHILD_DDT)
 532                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 533                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 534                         zio->io_logical = zio;
 535                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 536                         pipeline |= ZIO_GANG_STAGES;
 537         }
 538 
 539         zio->io_spa = spa;
 540         zio->io_txg = txg;
 541         zio->io_done = done;
 542         zio->io_private = private;
 543         zio->io_type = type;
 544         zio->io_priority = priority;
 545         zio->io_vd = vd;
 546         zio->io_offset = offset;
 547         zio->io_orig_data = zio->io_data = data;
 548         zio->io_orig_size = zio->io_size = size;
 549         zio->io_orig_flags = zio->io_flags = flags;
 550         zio->io_orig_stage = zio->io_stage = stage;
 551         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 552 
 553         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 554         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 555 
 556         if (zb != NULL)
 557                 zio->io_bookmark = *zb;
 558 
 559         if (pio != NULL) {
 560                 if (zio->io_logical == NULL)
 561                         zio->io_logical = pio->io_logical;
 562                 if (zio->io_child_type == ZIO_CHILD_GANG)
 563                         zio->io_gang_leader = pio->io_gang_leader;
 564                 zio_add_child(pio, zio);
 565         }
 566 
 567         return (zio);
 568 }
 569 
 570 static void
 571 zio_destroy(zio_t *zio)
 572 {
 573         list_destroy(&zio->io_parent_list);
 574         list_destroy(&zio->io_child_list);
 575         mutex_destroy(&zio->io_lock);
 576         cv_destroy(&zio->io_cv);
 577         kmem_cache_free(zio_cache, zio);
 578 }
 579 
 580 zio_t *
 581 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 582     void *private, enum zio_flag flags)
 583 {
 584         zio_t *zio;
 585 
 586         zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 587             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 588             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 589 
 590         return (zio);
 591 }
 592 
 593 zio_t *
 594 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
 595 {
 596         return (zio_null(NULL, spa, NULL, done, private, flags));
 597 }
 598 
 599 zio_t *
 600 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 601     void *data, uint64_t size, zio_done_func_t *done, void *private,
 602     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
 603 {
 604         zio_t *zio;
 605 
 606         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 607             data, size, done, private,
 608             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 609             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 610             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 611 
 612         return (zio);
 613 }
 614 
 615 zio_t *
 616 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 617     void *data, uint64_t size, const zio_prop_t *zp,
 618     zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
 619     void *private,
 620     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
 621 {
 622         zio_t *zio;
 623 
 624         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 625             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 626             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 627             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 628             DMU_OT_IS_VALID(zp->zp_type) &&
 629             zp->zp_level < 32 &&
 630             zp->zp_copies > 0 &&
 631             zp->zp_copies <= spa_max_replication(spa));
 632 
 633         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 634             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 635             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 636             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 637 
 638         zio->io_ready = ready;
 639         zio->io_physdone = physdone;
 640         zio->io_prop = *zp;
 641 
 642         /*
 643          * Data can be NULL if we are going to call zio_write_override() to
 644          * provide the already-allocated BP.  But we may need the data to
 645          * verify a dedup hit (if requested).  In this case, don't try to
 646          * dedup (just take the already-allocated BP verbatim).
 647          */
 648         if (data == NULL && zio->io_prop.zp_dedup_verify) {
 649                 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
 650         }
 651 
 652         return (zio);
 653 }
 654 
 655 zio_t *
 656 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
 657     uint64_t size, zio_done_func_t *done, void *private,
 658     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
 659 {
 660         zio_t *zio;
 661 
 662         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 663             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 664             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
 665 
 666         return (zio);
 667 }
 668 
 669 void
 670 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
 671 {
 672         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 673         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
 674         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
 675         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
 676 
 677         /*
 678          * We must reset the io_prop to match the values that existed
 679          * when the bp was first written by dmu_sync() keeping in mind
 680          * that nopwrite and dedup are mutually exclusive.
 681          */
 682         zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
 683         zio->io_prop.zp_nopwrite = nopwrite;
 684         zio->io_prop.zp_copies = copies;
 685         zio->io_bp_override = bp;
 686 }
 687 
 688 void
 689 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
 690 {
 691 
 692         /*
 693          * The check for EMBEDDED is a performance optimization.  We
 694          * process the free here (by ignoring it) rather than
 695          * putting it on the list and then processing it in zio_free_sync().
 696          */
 697         if (BP_IS_EMBEDDED(bp))
 698                 return;
 699         metaslab_check_free(spa, bp);
 700 
 701         /*
 702          * Frees that are for the currently-syncing txg, are not going to be
 703          * deferred, and which will not need to do a read (i.e. not GANG or
 704          * DEDUP), can be processed immediately.  Otherwise, put them on the
 705          * in-memory list for later processing.
 706          */
 707         if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
 708             txg != spa->spa_syncing_txg ||
 709             spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
 710                 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
 711         } else {
 712                 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
 713         }
 714 }
 715 
 716 zio_t *
 717 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 718     enum zio_flag flags)
 719 {
 720         zio_t *zio;
 721         enum zio_stage stage = ZIO_FREE_PIPELINE;
 722 
 723         ASSERT(!BP_IS_HOLE(bp));
 724         ASSERT(spa_syncing_txg(spa) == txg);
 725         ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
 726 
 727         if (BP_IS_EMBEDDED(bp))
 728                 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
 729 
 730         metaslab_check_free(spa, bp);
 731         arc_freed(spa, bp);
 732 
 733         /*
 734          * GANG and DEDUP blocks can induce a read (for the gang block header,
 735          * or the DDT), so issue them asynchronously so that this thread is
 736          * not tied up.
 737          */
 738         if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
 739                 stage |= ZIO_STAGE_ISSUE_ASYNC;
 740 
 741         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 742             NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
 743             NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
 744 
 745         return (zio);
 746 }
 747 
 748 zio_t *
 749 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 750     zio_done_func_t *done, void *private, enum zio_flag flags)
 751 {
 752         zio_t *zio;
 753 
 754         dprintf_bp(bp, "claiming in txg %llu", txg);
 755 
 756         if (BP_IS_EMBEDDED(bp))
 757                 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
 758 
 759         /*
 760          * A claim is an allocation of a specific block.  Claims are needed
 761          * to support immediate writes in the intent log.  The issue is that
 762          * immediate writes contain committed data, but in a txg that was
 763          * *not* committed.  Upon opening the pool after an unclean shutdown,
 764          * the intent log claims all blocks that contain immediate write data
 765          * so that the SPA knows they're in use.
 766          *
 767          * All claims *must* be resolved in the first txg -- before the SPA
 768          * starts allocating blocks -- so that nothing is allocated twice.
 769          * If txg == 0 we just verify that the block is claimable.
 770          */
 771         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
 772         ASSERT(txg == spa_first_txg(spa) || txg == 0);
 773         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
 774 
 775         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 776             done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
 777             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
 778 
 779         return (zio);
 780 }
 781 
 782 zio_t *
 783 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
 784     zio_done_func_t *done, void *private, enum zio_flag flags)
 785 {
 786         zio_t *zio;
 787         int c;
 788 
 789         if (vd->vdev_children == 0) {
 790                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 791                     ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 792                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
 793 
 794                 zio->io_cmd = cmd;
 795         } else {
 796                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
 797 
 798                 for (c = 0; c < vd->vdev_children; c++)
 799                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
 800                             done, private, flags));
 801         }
 802 
 803         return (zio);
 804 }
 805 
 806 zio_t *
 807 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 808     void *data, int checksum, zio_done_func_t *done, void *private,
 809     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
 810 {
 811         zio_t *zio;
 812 
 813         ASSERT(vd->vdev_children == 0);
 814         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 815             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 816         ASSERT3U(offset + size, <=, vd->vdev_psize);
 817 
 818         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 819             ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
 820             NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
 821 
 822         zio->io_prop.zp_checksum = checksum;
 823 
 824         return (zio);
 825 }
 826 
 827 zio_t *
 828 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 829     void *data, int checksum, zio_done_func_t *done, void *private,
 830     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
 831 {
 832         zio_t *zio;
 833 
 834         ASSERT(vd->vdev_children == 0);
 835         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 836             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 837         ASSERT3U(offset + size, <=, vd->vdev_psize);
 838 
 839         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 840             ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
 841             NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
 842 
 843         zio->io_prop.zp_checksum = checksum;
 844 
 845         if (zio_checksum_table[checksum].ci_eck) {
 846                 /*
 847                  * zec checksums are necessarily destructive -- they modify
 848                  * the end of the write buffer to hold the verifier/checksum.
 849                  * Therefore, we must make a local copy in case the data is
 850                  * being written to multiple places in parallel.
 851                  */
 852                 void *wbuf = zio_buf_alloc(size);
 853                 bcopy(data, wbuf, size);
 854                 zio_push_transform(zio, wbuf, size, size, NULL);
 855         }
 856 
 857         return (zio);
 858 }
 859 
 860 /*
 861  * Create a child I/O to do some work for us.
 862  */
 863 zio_t *
 864 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
 865         void *data, uint64_t size, int type, zio_priority_t priority,
 866         enum zio_flag flags, zio_done_func_t *done, void *private)
 867 {
 868         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
 869         zio_t *zio;
 870 
 871         ASSERT(vd->vdev_parent ==
 872             (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
 873 
 874         if (type == ZIO_TYPE_READ && bp != NULL) {
 875                 /*
 876                  * If we have the bp, then the child should perform the
 877                  * checksum and the parent need not.  This pushes error
 878                  * detection as close to the leaves as possible and
 879                  * eliminates redundant checksums in the interior nodes.
 880                  */
 881                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
 882                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
 883         }
 884 
 885         if (vd->vdev_children == 0)
 886                 offset += VDEV_LABEL_START_SIZE;
 887 
 888         flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
 889 
 890         /*
 891          * If we've decided to do a repair, the write is not speculative --
 892          * even if the original read was.
 893          */
 894         if (flags & ZIO_FLAG_IO_REPAIR)
 895                 flags &= ~ZIO_FLAG_SPECULATIVE;
 896 
 897         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
 898             done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
 899             ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
 900 
 901         zio->io_physdone = pio->io_physdone;
 902         if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
 903                 zio->io_logical->io_phys_children++;
 904 
 905         return (zio);
 906 }
 907 
 908 zio_t *
 909 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
 910         int type, zio_priority_t priority, enum zio_flag flags,
 911         zio_done_func_t *done, void *private)
 912 {
 913         zio_t *zio;
 914 
 915         ASSERT(vd->vdev_ops->vdev_op_leaf);
 916 
 917         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
 918             data, size, done, private, type, priority,
 919             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
 920             vd, offset, NULL,
 921             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
 922 
 923         return (zio);
 924 }
 925 
 926 void
 927 zio_flush(zio_t *zio, vdev_t *vd)
 928 {
 929         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
 930             NULL, NULL,
 931             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
 932 }
 933 
 934 void
 935 zio_shrink(zio_t *zio, uint64_t size)
 936 {
 937         ASSERT(zio->io_executor == NULL);
 938         ASSERT(zio->io_orig_size == zio->io_size);
 939         ASSERT(size <= zio->io_size);
 940 
 941         /*
 942          * We don't shrink for raidz because of problems with the
 943          * reconstruction when reading back less than the block size.
 944          * Note, BP_IS_RAIDZ() assumes no compression.
 945          */
 946         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 947         if (!BP_IS_RAIDZ(zio->io_bp))
 948                 zio->io_orig_size = zio->io_size = size;
 949 }
 950 
 951 /*
 952  * ==========================================================================
 953  * Prepare to read and write logical blocks
 954  * ==========================================================================
 955  */
 956 
 957 static int
 958 zio_read_bp_init(zio_t *zio)
 959 {
 960         blkptr_t *bp = zio->io_bp;
 961 
 962         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
 963             zio->io_child_type == ZIO_CHILD_LOGICAL &&
 964             !(zio->io_flags & ZIO_FLAG_RAW)) {
 965                 uint64_t psize =
 966                     BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
 967                 void *cbuf = zio_buf_alloc(psize);
 968 
 969                 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
 970         }
 971 
 972         if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
 973                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
 974                 decode_embedded_bp_compressed(bp, zio->io_data);
 975         } else {
 976                 ASSERT(!BP_IS_EMBEDDED(bp));
 977         }
 978 
 979         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
 980                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 981 
 982         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
 983                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 984 
 985         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
 986                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
 987 
 988         return (ZIO_PIPELINE_CONTINUE);
 989 }
 990 
 991 static int
 992 zio_write_bp_init(zio_t *zio)
 993 {
 994         spa_t *spa = zio->io_spa;
 995         zio_prop_t *zp = &zio->io_prop;
 996         enum zio_compress compress = zp->zp_compress;
 997         blkptr_t *bp = zio->io_bp;
 998         uint64_t lsize = zio->io_size;
 999         uint64_t psize = lsize;
1000         int pass = 1;
1001 
1002         /*
1003          * If our children haven't all reached the ready stage,
1004          * wait for them and then repeat this pipeline stage.
1005          */
1006         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1007             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1008                 return (ZIO_PIPELINE_STOP);
1009 
1010         if (!IO_IS_ALLOCATING(zio))
1011                 return (ZIO_PIPELINE_CONTINUE);
1012 
1013         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1014 
1015         if (zio->io_bp_override) {
1016                 ASSERT(bp->blk_birth != zio->io_txg);
1017                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1018 
1019                 *bp = *zio->io_bp_override;
1020                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1021 
1022                 if (BP_IS_EMBEDDED(bp))
1023                         return (ZIO_PIPELINE_CONTINUE);
1024 
1025                 /*
1026                  * If we've been overridden and nopwrite is set then
1027                  * set the flag accordingly to indicate that a nopwrite
1028                  * has already occurred.
1029                  */
1030                 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1031                         ASSERT(!zp->zp_dedup);
1032                         zio->io_flags |= ZIO_FLAG_NOPWRITE;
1033                         return (ZIO_PIPELINE_CONTINUE);
1034                 }
1035 
1036                 ASSERT(!zp->zp_nopwrite);
1037 
1038                 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1039                         return (ZIO_PIPELINE_CONTINUE);
1040 
1041                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1042                     zp->zp_dedup_verify);
1043 
1044                 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1045                         BP_SET_DEDUP(bp, 1);
1046                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1047                         return (ZIO_PIPELINE_CONTINUE);
1048                 }
1049                 zio->io_bp_override = NULL;
1050                 BP_ZERO(bp);
1051         }
1052 
1053         if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1054                 /*
1055                  * We're rewriting an existing block, which means we're
1056                  * working on behalf of spa_sync().  For spa_sync() to
1057                  * converge, it must eventually be the case that we don't
1058                  * have to allocate new blocks.  But compression changes
1059                  * the blocksize, which forces a reallocate, and makes
1060                  * convergence take longer.  Therefore, after the first
1061                  * few passes, stop compressing to ensure convergence.
1062                  */
1063                 pass = spa_sync_pass(spa);
1064 
1065                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1066                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1067                 ASSERT(!BP_GET_DEDUP(bp));
1068 
1069                 if (pass >= zfs_sync_pass_dont_compress)
1070                         compress = ZIO_COMPRESS_OFF;
1071 
1072                 /* Make sure someone doesn't change their mind on overwrites */
1073                 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1074                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1075         }
1076 
1077         if (compress != ZIO_COMPRESS_OFF) {
1078                 void *cbuf = zio_buf_alloc(lsize);
1079                 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1080                 if (psize == 0 || psize == lsize) {
1081                         compress = ZIO_COMPRESS_OFF;
1082                         zio_buf_free(cbuf, lsize);
1083                 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1084                     zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1085                     spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1086                         encode_embedded_bp_compressed(bp,
1087                             cbuf, compress, lsize, psize);
1088                         BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1089                         BP_SET_TYPE(bp, zio->io_prop.zp_type);
1090                         BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1091                         zio_buf_free(cbuf, lsize);
1092                         bp->blk_birth = zio->io_txg;
1093                         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1094                         ASSERT(spa_feature_is_active(spa,
1095                             SPA_FEATURE_EMBEDDED_DATA));
1096                         return (ZIO_PIPELINE_CONTINUE);
1097                 } else {
1098                         /*
1099                          * Round up compressed size to MINBLOCKSIZE and
1100                          * zero the tail.
1101                          */
1102                         size_t rounded =
1103                             P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1104                         if (rounded > psize) {
1105                                 bzero((char *)cbuf + psize, rounded - psize);
1106                                 psize = rounded;
1107                         }
1108                         if (psize == lsize) {
1109                                 compress = ZIO_COMPRESS_OFF;
1110                                 zio_buf_free(cbuf, lsize);
1111                         } else {
1112                                 zio_push_transform(zio, cbuf,
1113                                     psize, lsize, NULL);
1114                         }
1115                 }
1116         }
1117 
1118         /*
1119          * The final pass of spa_sync() must be all rewrites, but the first
1120          * few passes offer a trade-off: allocating blocks defers convergence,
1121          * but newly allocated blocks are sequential, so they can be written
1122          * to disk faster.  Therefore, we allow the first few passes of
1123          * spa_sync() to allocate new blocks, but force rewrites after that.
1124          * There should only be a handful of blocks after pass 1 in any case.
1125          */
1126         if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1127             BP_GET_PSIZE(bp) == psize &&
1128             pass >= zfs_sync_pass_rewrite) {
1129                 ASSERT(psize != 0);
1130                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1131                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1132                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1133         } else {
1134                 BP_ZERO(bp);
1135                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1136         }
1137 
1138         if (psize == 0) {
1139                 if (zio->io_bp_orig.blk_birth != 0 &&
1140                     spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1141                         BP_SET_LSIZE(bp, lsize);
1142                         BP_SET_TYPE(bp, zp->zp_type);
1143                         BP_SET_LEVEL(bp, zp->zp_level);
1144                         BP_SET_BIRTH(bp, zio->io_txg, 0);
1145                 }
1146                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1147         } else {
1148                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1149                 BP_SET_LSIZE(bp, lsize);
1150                 BP_SET_TYPE(bp, zp->zp_type);
1151                 BP_SET_LEVEL(bp, zp->zp_level);
1152                 BP_SET_PSIZE(bp, psize);
1153                 BP_SET_COMPRESS(bp, compress);
1154                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1155                 BP_SET_DEDUP(bp, zp->zp_dedup);
1156                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1157                 if (zp->zp_dedup) {
1158                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1159                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1160                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1161                 }
1162                 if (zp->zp_nopwrite) {
1163                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1164                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1165                         zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1166                 }
1167         }
1168 
1169         return (ZIO_PIPELINE_CONTINUE);
1170 }
1171 
1172 static int
1173 zio_free_bp_init(zio_t *zio)
1174 {
1175         blkptr_t *bp = zio->io_bp;
1176 
1177         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1178                 if (BP_GET_DEDUP(bp))
1179                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1180         }
1181 
1182         return (ZIO_PIPELINE_CONTINUE);
1183 }
1184 
1185 /*
1186  * ==========================================================================
1187  * Execute the I/O pipeline
1188  * ==========================================================================
1189  */
1190 
1191 static void
1192 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1193 {
1194         spa_t *spa = zio->io_spa;
1195         zio_type_t t = zio->io_type;
1196         int flags = (cutinline ? TQ_FRONT : 0);
1197 
1198         /*
1199          * If we're a config writer or a probe, the normal issue and
1200          * interrupt threads may all be blocked waiting for the config lock.
1201          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1202          */
1203         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1204                 t = ZIO_TYPE_NULL;
1205 
1206         /*
1207          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1208          */
1209         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1210                 t = ZIO_TYPE_NULL;
1211 
1212         /*
1213          * If this is a high priority I/O, then use the high priority taskq if
1214          * available.
1215          */
1216         if (zio->io_priority == ZIO_PRIORITY_NOW &&
1217             spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1218                 q++;
1219 
1220         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1221 
1222         /*
1223          * NB: We are assuming that the zio can only be dispatched
1224          * to a single taskq at a time.  It would be a grievous error
1225          * to dispatch the zio to another taskq at the same time.
1226          */
1227         ASSERT(zio->io_tqent.tqent_next == NULL);
1228         spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1229             flags, &zio->io_tqent);
1230 }
1231 
1232 static boolean_t
1233 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1234 {
1235         kthread_t *executor = zio->io_executor;
1236         spa_t *spa = zio->io_spa;
1237 
1238         for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1239                 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1240                 uint_t i;
1241                 for (i = 0; i < tqs->stqs_count; i++) {
1242                         if (taskq_member(tqs->stqs_taskq[i], executor))
1243                                 return (B_TRUE);
1244                 }
1245         }
1246 
1247         return (B_FALSE);
1248 }
1249 
1250 static int
1251 zio_issue_async(zio_t *zio)
1252 {
1253         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1254 
1255         return (ZIO_PIPELINE_STOP);
1256 }
1257 
1258 void
1259 zio_interrupt(zio_t *zio)
1260 {
1261         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1262 }
1263 
1264 /*
1265  * Execute the I/O pipeline until one of the following occurs:
1266  *
1267  *      (1) the I/O completes
1268  *      (2) the pipeline stalls waiting for dependent child I/Os
1269  *      (3) the I/O issues, so we're waiting for an I/O completion interrupt
1270  *      (4) the I/O is delegated by vdev-level caching or aggregation
1271  *      (5) the I/O is deferred due to vdev-level queueing
1272  *      (6) the I/O is handed off to another thread.
1273  *
1274  * In all cases, the pipeline stops whenever there's no CPU work; it never
1275  * burns a thread in cv_wait().
1276  *
1277  * There's no locking on io_stage because there's no legitimate way
1278  * for multiple threads to be attempting to process the same I/O.
1279  */
1280 static zio_pipe_stage_t *zio_pipeline[];
1281 
1282 void
1283 zio_execute(zio_t *zio)
1284 {
1285         zio->io_executor = curthread;
1286 
1287         while (zio->io_stage < ZIO_STAGE_DONE) {
1288                 enum zio_stage pipeline = zio->io_pipeline;
1289                 enum zio_stage stage = zio->io_stage;
1290                 int rv;
1291 
1292                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1293                 ASSERT(ISP2(stage));
1294                 ASSERT(zio->io_stall == NULL);
1295 
1296                 do {
1297                         stage <<= 1;
1298                 } while ((stage & pipeline) == 0);
1299 
1300                 ASSERT(stage <= ZIO_STAGE_DONE);
1301 
1302                 /*
1303                  * If we are in interrupt context and this pipeline stage
1304                  * will grab a config lock that is held across I/O,
1305                  * or may wait for an I/O that needs an interrupt thread
1306                  * to complete, issue async to avoid deadlock.
1307                  *
1308                  * For VDEV_IO_START, we cut in line so that the io will
1309                  * be sent to disk promptly.
1310                  */
1311                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1312                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1313                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1314                             zio_requeue_io_start_cut_in_line : B_FALSE;
1315                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1316                         return;
1317                 }
1318 
1319                 zio->io_stage = stage;
1320                 rv = zio_pipeline[highbit64(stage) - 1](zio);
1321 
1322                 if (rv == ZIO_PIPELINE_STOP)
1323                         return;
1324 
1325                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1326         }
1327 }
1328 
1329 /*
1330  * ==========================================================================
1331  * Initiate I/O, either sync or async
1332  * ==========================================================================
1333  */
1334 int
1335 zio_wait(zio_t *zio)
1336 {
1337         int error;
1338 
1339         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1340         ASSERT(zio->io_executor == NULL);
1341 
1342         zio->io_waiter = curthread;
1343 
1344         zio_execute(zio);
1345 
1346         mutex_enter(&zio->io_lock);
1347         while (zio->io_executor != NULL)
1348                 cv_wait(&zio->io_cv, &zio->io_lock);
1349         mutex_exit(&zio->io_lock);
1350 
1351         error = zio->io_error;
1352         zio_destroy(zio);
1353 
1354         return (error);
1355 }
1356 
1357 void
1358 zio_nowait(zio_t *zio)
1359 {
1360         ASSERT(zio->io_executor == NULL);
1361 
1362         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1363             zio_unique_parent(zio) == NULL) {
1364                 /*
1365                  * This is a logical async I/O with no parent to wait for it.
1366                  * We add it to the spa_async_root_zio "Godfather" I/O which
1367                  * will ensure they complete prior to unloading the pool.
1368                  */
1369                 spa_t *spa = zio->io_spa;
1370 
1371                 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1372         }
1373 
1374         zio_execute(zio);
1375 }
1376 
1377 /*
1378  * ==========================================================================
1379  * Reexecute or suspend/resume failed I/O
1380  * ==========================================================================
1381  */
1382 
1383 static void
1384 zio_reexecute(zio_t *pio)
1385 {
1386         zio_t *cio, *cio_next;
1387 
1388         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1389         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1390         ASSERT(pio->io_gang_leader == NULL);
1391         ASSERT(pio->io_gang_tree == NULL);
1392 
1393         pio->io_flags = pio->io_orig_flags;
1394         pio->io_stage = pio->io_orig_stage;
1395         pio->io_pipeline = pio->io_orig_pipeline;
1396         pio->io_reexecute = 0;
1397         pio->io_flags |= ZIO_FLAG_REEXECUTED;
1398         pio->io_error = 0;
1399         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1400                 pio->io_state[w] = 0;
1401         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1402                 pio->io_child_error[c] = 0;
1403 
1404         if (IO_IS_ALLOCATING(pio))
1405                 BP_ZERO(pio->io_bp);
1406 
1407         /*
1408          * As we reexecute pio's children, new children could be created.
1409          * New children go to the head of pio's io_child_list, however,
1410          * so we will (correctly) not reexecute them.  The key is that
1411          * the remainder of pio's io_child_list, from 'cio_next' onward,
1412          * cannot be affected by any side effects of reexecuting 'cio'.
1413          */
1414         for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1415                 cio_next = zio_walk_children(pio);
1416                 mutex_enter(&pio->io_lock);
1417                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1418                         pio->io_children[cio->io_child_type][w]++;
1419                 mutex_exit(&pio->io_lock);
1420                 zio_reexecute(cio);
1421         }
1422 
1423         /*
1424          * Now that all children have been reexecuted, execute the parent.
1425          * We don't reexecute "The Godfather" I/O here as it's the
1426          * responsibility of the caller to wait on him.
1427          */
1428         if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1429                 zio_execute(pio);
1430 }
1431 
1432 void
1433 zio_suspend(spa_t *spa, zio_t *zio)
1434 {
1435         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1436                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1437                     "failure and the failure mode property for this pool "
1438                     "is set to panic.", spa_name(spa));
1439 
1440         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1441 
1442         mutex_enter(&spa->spa_suspend_lock);
1443 
1444         if (spa->spa_suspend_zio_root == NULL)
1445                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1446                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1447                     ZIO_FLAG_GODFATHER);
1448 
1449         spa->spa_suspended = B_TRUE;
1450 
1451         if (zio != NULL) {
1452                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1453                 ASSERT(zio != spa->spa_suspend_zio_root);
1454                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1455                 ASSERT(zio_unique_parent(zio) == NULL);
1456                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1457                 zio_add_child(spa->spa_suspend_zio_root, zio);
1458         }
1459 
1460         mutex_exit(&spa->spa_suspend_lock);
1461 }
1462 
1463 int
1464 zio_resume(spa_t *spa)
1465 {
1466         zio_t *pio;
1467 
1468         /*
1469          * Reexecute all previously suspended i/o.
1470          */
1471         mutex_enter(&spa->spa_suspend_lock);
1472         spa->spa_suspended = B_FALSE;
1473         cv_broadcast(&spa->spa_suspend_cv);
1474         pio = spa->spa_suspend_zio_root;
1475         spa->spa_suspend_zio_root = NULL;
1476         mutex_exit(&spa->spa_suspend_lock);
1477 
1478         if (pio == NULL)
1479                 return (0);
1480 
1481         zio_reexecute(pio);
1482         return (zio_wait(pio));
1483 }
1484 
1485 void
1486 zio_resume_wait(spa_t *spa)
1487 {
1488         mutex_enter(&spa->spa_suspend_lock);
1489         while (spa_suspended(spa))
1490                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1491         mutex_exit(&spa->spa_suspend_lock);
1492 }
1493 
1494 /*
1495  * ==========================================================================
1496  * Gang blocks.
1497  *
1498  * A gang block is a collection of small blocks that looks to the DMU
1499  * like one large block.  When zio_dva_allocate() cannot find a block
1500  * of the requested size, due to either severe fragmentation or the pool
1501  * being nearly full, it calls zio_write_gang_block() to construct the
1502  * block from smaller fragments.
1503  *
1504  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1505  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1506  * an indirect block: it's an array of block pointers.  It consumes
1507  * only one sector and hence is allocatable regardless of fragmentation.
1508  * The gang header's bps point to its gang members, which hold the data.
1509  *
1510  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1511  * as the verifier to ensure uniqueness of the SHA256 checksum.
1512  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1513  * not the gang header.  This ensures that data block signatures (needed for
1514  * deduplication) are independent of how the block is physically stored.
1515  *
1516  * Gang blocks can be nested: a gang member may itself be a gang block.
1517  * Thus every gang block is a tree in which root and all interior nodes are
1518  * gang headers, and the leaves are normal blocks that contain user data.
1519  * The root of the gang tree is called the gang leader.
1520  *
1521  * To perform any operation (read, rewrite, free, claim) on a gang block,
1522  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1523  * in the io_gang_tree field of the original logical i/o by recursively
1524  * reading the gang leader and all gang headers below it.  This yields
1525  * an in-core tree containing the contents of every gang header and the
1526  * bps for every constituent of the gang block.
1527  *
1528  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1529  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1530  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1531  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1532  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1533  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1534  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1535  * of the gang header plus zio_checksum_compute() of the data to update the
1536  * gang header's blk_cksum as described above.
1537  *
1538  * The two-phase assemble/issue model solves the problem of partial failure --
1539  * what if you'd freed part of a gang block but then couldn't read the
1540  * gang header for another part?  Assembling the entire gang tree first
1541  * ensures that all the necessary gang header I/O has succeeded before
1542  * starting the actual work of free, claim, or write.  Once the gang tree
1543  * is assembled, free and claim are in-memory operations that cannot fail.
1544  *
1545  * In the event that a gang write fails, zio_dva_unallocate() walks the
1546  * gang tree to immediately free (i.e. insert back into the space map)
1547  * everything we've allocated.  This ensures that we don't get ENOSPC
1548  * errors during repeated suspend/resume cycles due to a flaky device.
1549  *
1550  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1551  * the gang tree, we won't modify the block, so we can safely defer the free
1552  * (knowing that the block is still intact).  If we *can* assemble the gang
1553  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1554  * each constituent bp and we can allocate a new block on the next sync pass.
1555  *
1556  * In all cases, the gang tree allows complete recovery from partial failure.
1557  * ==========================================================================
1558  */
1559 
1560 static zio_t *
1561 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1562 {
1563         if (gn != NULL)
1564                 return (pio);
1565 
1566         return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1567             NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1568             &pio->io_bookmark));
1569 }
1570 
1571 zio_t *
1572 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1573 {
1574         zio_t *zio;
1575 
1576         if (gn != NULL) {
1577                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1578                     gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1579                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1580                 /*
1581                  * As we rewrite each gang header, the pipeline will compute
1582                  * a new gang block header checksum for it; but no one will
1583                  * compute a new data checksum, so we do that here.  The one
1584                  * exception is the gang leader: the pipeline already computed
1585                  * its data checksum because that stage precedes gang assembly.
1586                  * (Presently, nothing actually uses interior data checksums;
1587                  * this is just good hygiene.)
1588                  */
1589                 if (gn != pio->io_gang_leader->io_gang_tree) {
1590                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1591                             data, BP_GET_PSIZE(bp));
1592                 }
1593                 /*
1594                  * If we are here to damage data for testing purposes,
1595                  * leave the GBH alone so that we can detect the damage.
1596                  */
1597                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1598                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1599         } else {
1600                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1601                     data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1602                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1603         }
1604 
1605         return (zio);
1606 }
1607 
1608 /* ARGSUSED */
1609 zio_t *
1610 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1611 {
1612         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1613             ZIO_GANG_CHILD_FLAGS(pio)));
1614 }
1615 
1616 /* ARGSUSED */
1617 zio_t *
1618 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1619 {
1620         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1621             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1622 }
1623 
1624 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1625         NULL,
1626         zio_read_gang,
1627         zio_rewrite_gang,
1628         zio_free_gang,
1629         zio_claim_gang,
1630         NULL
1631 };
1632 
1633 static void zio_gang_tree_assemble_done(zio_t *zio);
1634 
1635 static zio_gang_node_t *
1636 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1637 {
1638         zio_gang_node_t *gn;
1639 
1640         ASSERT(*gnpp == NULL);
1641 
1642         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1643         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1644         *gnpp = gn;
1645 
1646         return (gn);
1647 }
1648 
1649 static void
1650 zio_gang_node_free(zio_gang_node_t **gnpp)
1651 {
1652         zio_gang_node_t *gn = *gnpp;
1653 
1654         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1655                 ASSERT(gn->gn_child[g] == NULL);
1656 
1657         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1658         kmem_free(gn, sizeof (*gn));
1659         *gnpp = NULL;
1660 }
1661 
1662 static void
1663 zio_gang_tree_free(zio_gang_node_t **gnpp)
1664 {
1665         zio_gang_node_t *gn = *gnpp;
1666 
1667         if (gn == NULL)
1668                 return;
1669 
1670         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1671                 zio_gang_tree_free(&gn->gn_child[g]);
1672 
1673         zio_gang_node_free(gnpp);
1674 }
1675 
1676 static void
1677 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1678 {
1679         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1680 
1681         ASSERT(gio->io_gang_leader == gio);
1682         ASSERT(BP_IS_GANG(bp));
1683 
1684         zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1685             SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1686             gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1687 }
1688 
1689 static void
1690 zio_gang_tree_assemble_done(zio_t *zio)
1691 {
1692         zio_t *gio = zio->io_gang_leader;
1693         zio_gang_node_t *gn = zio->io_private;
1694         blkptr_t *bp = zio->io_bp;
1695 
1696         ASSERT(gio == zio_unique_parent(zio));
1697         ASSERT(zio->io_child_count == 0);
1698 
1699         if (zio->io_error)
1700                 return;
1701 
1702         if (BP_SHOULD_BYTESWAP(bp))
1703                 byteswap_uint64_array(zio->io_data, zio->io_size);
1704 
1705         ASSERT(zio->io_data == gn->gn_gbh);
1706         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1707         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1708 
1709         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1710                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1711                 if (!BP_IS_GANG(gbp))
1712                         continue;
1713                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1714         }
1715 }
1716 
1717 static void
1718 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1719 {
1720         zio_t *gio = pio->io_gang_leader;
1721         zio_t *zio;
1722 
1723         ASSERT(BP_IS_GANG(bp) == !!gn);
1724         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1725         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1726 
1727         /*
1728          * If you're a gang header, your data is in gn->gn_gbh.
1729          * If you're a gang member, your data is in 'data' and gn == NULL.
1730          */
1731         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1732 
1733         if (gn != NULL) {
1734                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1735 
1736                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1737                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1738                         if (BP_IS_HOLE(gbp))
1739                                 continue;
1740                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1741                         data = (char *)data + BP_GET_PSIZE(gbp);
1742                 }
1743         }
1744 
1745         if (gn == gio->io_gang_tree)
1746                 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1747 
1748         if (zio != pio)
1749                 zio_nowait(zio);
1750 }
1751 
1752 static int
1753 zio_gang_assemble(zio_t *zio)
1754 {
1755         blkptr_t *bp = zio->io_bp;
1756 
1757         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1758         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1759 
1760         zio->io_gang_leader = zio;
1761 
1762         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1763 
1764         return (ZIO_PIPELINE_CONTINUE);
1765 }
1766 
1767 static int
1768 zio_gang_issue(zio_t *zio)
1769 {
1770         blkptr_t *bp = zio->io_bp;
1771 
1772         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1773                 return (ZIO_PIPELINE_STOP);
1774 
1775         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1776         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1777 
1778         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1779                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1780         else
1781                 zio_gang_tree_free(&zio->io_gang_tree);
1782 
1783         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1784 
1785         return (ZIO_PIPELINE_CONTINUE);
1786 }
1787 
1788 static void
1789 zio_write_gang_member_ready(zio_t *zio)
1790 {
1791         zio_t *pio = zio_unique_parent(zio);
1792         zio_t *gio = zio->io_gang_leader;
1793         dva_t *cdva = zio->io_bp->blk_dva;
1794         dva_t *pdva = pio->io_bp->blk_dva;
1795         uint64_t asize;
1796 
1797         if (BP_IS_HOLE(zio->io_bp))
1798                 return;
1799 
1800         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1801 
1802         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1803         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1804         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1805         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1806         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1807 
1808         mutex_enter(&pio->io_lock);
1809         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1810                 ASSERT(DVA_GET_GANG(&pdva[d]));
1811                 asize = DVA_GET_ASIZE(&pdva[d]);
1812                 asize += DVA_GET_ASIZE(&cdva[d]);
1813                 DVA_SET_ASIZE(&pdva[d], asize);
1814         }
1815         mutex_exit(&pio->io_lock);
1816 }
1817 
1818 static int
1819 zio_write_gang_block(zio_t *pio)
1820 {
1821         spa_t *spa = pio->io_spa;
1822         blkptr_t *bp = pio->io_bp;
1823         zio_t *gio = pio->io_gang_leader;
1824         zio_t *zio;
1825         zio_gang_node_t *gn, **gnpp;
1826         zio_gbh_phys_t *gbh;
1827         uint64_t txg = pio->io_txg;
1828         uint64_t resid = pio->io_size;
1829         uint64_t lsize;
1830         int copies = gio->io_prop.zp_copies;
1831         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1832         zio_prop_t zp;
1833         int error;
1834 
1835         error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1836             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1837             METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1838         if (error) {
1839                 pio->io_error = error;
1840                 return (ZIO_PIPELINE_CONTINUE);
1841         }
1842 
1843         if (pio == gio) {
1844                 gnpp = &gio->io_gang_tree;
1845         } else {
1846                 gnpp = pio->io_private;
1847                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1848         }
1849 
1850         gn = zio_gang_node_alloc(gnpp);
1851         gbh = gn->gn_gbh;
1852         bzero(gbh, SPA_GANGBLOCKSIZE);
1853 
1854         /*
1855          * Create the gang header.
1856          */
1857         zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1858             pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1859 
1860         /*
1861          * Create and nowait the gang children.
1862          */
1863         for (int g = 0; resid != 0; resid -= lsize, g++) {
1864                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1865                     SPA_MINBLOCKSIZE);
1866                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1867 
1868                 zp.zp_checksum = gio->io_prop.zp_checksum;
1869                 zp.zp_compress = ZIO_COMPRESS_OFF;
1870                 zp.zp_type = DMU_OT_NONE;
1871                 zp.zp_level = 0;
1872                 zp.zp_copies = gio->io_prop.zp_copies;
1873                 zp.zp_dedup = B_FALSE;
1874                 zp.zp_dedup_verify = B_FALSE;
1875                 zp.zp_nopwrite = B_FALSE;
1876 
1877                 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1878                     (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1879                     zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1880                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1881                     &pio->io_bookmark));
1882         }
1883 
1884         /*
1885          * Set pio's pipeline to just wait for zio to finish.
1886          */
1887         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1888 
1889         zio_nowait(zio);
1890 
1891         return (ZIO_PIPELINE_CONTINUE);
1892 }
1893 
1894 /*
1895  * The zio_nop_write stage in the pipeline determines if allocating
1896  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1897  * such as SHA256, we can compare the checksums of the new data and the old
1898  * to determine if allocating a new block is required.  The nopwrite
1899  * feature can handle writes in either syncing or open context (i.e. zil
1900  * writes) and as a result is mutually exclusive with dedup.
1901  */
1902 static int
1903 zio_nop_write(zio_t *zio)
1904 {
1905         blkptr_t *bp = zio->io_bp;
1906         blkptr_t *bp_orig = &zio->io_bp_orig;
1907         zio_prop_t *zp = &zio->io_prop;
1908 
1909         ASSERT(BP_GET_LEVEL(bp) == 0);
1910         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1911         ASSERT(zp->zp_nopwrite);
1912         ASSERT(!zp->zp_dedup);
1913         ASSERT(zio->io_bp_override == NULL);
1914         ASSERT(IO_IS_ALLOCATING(zio));
1915 
1916         /*
1917          * Check to see if the original bp and the new bp have matching
1918          * characteristics (i.e. same checksum, compression algorithms, etc).
1919          * If they don't then just continue with the pipeline which will
1920          * allocate a new bp.
1921          */
1922         if (BP_IS_HOLE(bp_orig) ||
1923             !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1924             BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1925             BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1926             BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1927             zp->zp_copies != BP_GET_NDVAS(bp_orig))
1928                 return (ZIO_PIPELINE_CONTINUE);
1929 
1930         /*
1931          * If the checksums match then reset the pipeline so that we
1932          * avoid allocating a new bp and issuing any I/O.
1933          */
1934         if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1935                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1936                 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1937                 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1938                 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1939                 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1940                     sizeof (uint64_t)) == 0);
1941 
1942                 *bp = *bp_orig;
1943                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1944                 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1945         }
1946 
1947         return (ZIO_PIPELINE_CONTINUE);
1948 }
1949 
1950 /*
1951  * ==========================================================================
1952  * Dedup
1953  * ==========================================================================
1954  */
1955 static void
1956 zio_ddt_child_read_done(zio_t *zio)
1957 {
1958         blkptr_t *bp = zio->io_bp;
1959         ddt_entry_t *dde = zio->io_private;
1960         ddt_phys_t *ddp;
1961         zio_t *pio = zio_unique_parent(zio);
1962 
1963         mutex_enter(&pio->io_lock);
1964         ddp = ddt_phys_select(dde, bp);
1965         if (zio->io_error == 0)
1966                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
1967         if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1968                 dde->dde_repair_data = zio->io_data;
1969         else
1970                 zio_buf_free(zio->io_data, zio->io_size);
1971         mutex_exit(&pio->io_lock);
1972 }
1973 
1974 static int
1975 zio_ddt_read_start(zio_t *zio)
1976 {
1977         blkptr_t *bp = zio->io_bp;
1978 
1979         ASSERT(BP_GET_DEDUP(bp));
1980         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1981         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1982 
1983         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1984                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1985                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1986                 ddt_phys_t *ddp = dde->dde_phys;
1987                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1988                 blkptr_t blk;
1989 
1990                 ASSERT(zio->io_vsd == NULL);
1991                 zio->io_vsd = dde;
1992 
1993                 if (ddp_self == NULL)
1994                         return (ZIO_PIPELINE_CONTINUE);
1995 
1996                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1997                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1998                                 continue;
1999                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2000                             &blk);
2001                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
2002                             zio_buf_alloc(zio->io_size), zio->io_size,
2003                             zio_ddt_child_read_done, dde, zio->io_priority,
2004                             ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2005                             &zio->io_bookmark));
2006                 }
2007                 return (ZIO_PIPELINE_CONTINUE);
2008         }
2009 
2010         zio_nowait(zio_read(zio, zio->io_spa, bp,
2011             zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2012             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2013 
2014         return (ZIO_PIPELINE_CONTINUE);
2015 }
2016 
2017 static int
2018 zio_ddt_read_done(zio_t *zio)
2019 {
2020         blkptr_t *bp = zio->io_bp;
2021 
2022         if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2023                 return (ZIO_PIPELINE_STOP);
2024 
2025         ASSERT(BP_GET_DEDUP(bp));
2026         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2027         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2028 
2029         if (zio->io_child_error[ZIO_CHILD_DDT]) {
2030                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2031                 ddt_entry_t *dde = zio->io_vsd;
2032                 if (ddt == NULL) {
2033                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2034                         return (ZIO_PIPELINE_CONTINUE);
2035                 }
2036                 if (dde == NULL) {
2037                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2038                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2039                         return (ZIO_PIPELINE_STOP);
2040                 }
2041                 if (dde->dde_repair_data != NULL) {
2042                         bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2043                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
2044                 }
2045                 ddt_repair_done(ddt, dde);
2046                 zio->io_vsd = NULL;
2047         }
2048 
2049         ASSERT(zio->io_vsd == NULL);
2050 
2051         return (ZIO_PIPELINE_CONTINUE);
2052 }
2053 
2054 static boolean_t
2055 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2056 {
2057         spa_t *spa = zio->io_spa;
2058 
2059         /*
2060          * Note: we compare the original data, not the transformed data,
2061          * because when zio->io_bp is an override bp, we will not have
2062          * pushed the I/O transforms.  That's an important optimization
2063          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2064          */
2065         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2066                 zio_t *lio = dde->dde_lead_zio[p];
2067 
2068                 if (lio != NULL) {
2069                         return (lio->io_orig_size != zio->io_orig_size ||
2070                             bcmp(zio->io_orig_data, lio->io_orig_data,
2071                             zio->io_orig_size) != 0);
2072                 }
2073         }
2074 
2075         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2076                 ddt_phys_t *ddp = &dde->dde_phys[p];
2077 
2078                 if (ddp->ddp_phys_birth != 0) {
2079                         arc_buf_t *abuf = NULL;
2080                         uint32_t aflags = ARC_WAIT;
2081                         blkptr_t blk = *zio->io_bp;
2082                         int error;
2083 
2084                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2085 
2086                         ddt_exit(ddt);
2087 
2088                         error = arc_read(NULL, spa, &blk,
2089                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2090                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2091                             &aflags, &zio->io_bookmark);
2092 
2093                         if (error == 0) {
2094                                 if (arc_buf_size(abuf) != zio->io_orig_size ||
2095                                     bcmp(abuf->b_data, zio->io_orig_data,
2096                                     zio->io_orig_size) != 0)
2097                                         error = SET_ERROR(EEXIST);
2098                                 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2099                         }
2100 
2101                         ddt_enter(ddt);
2102                         return (error != 0);
2103                 }
2104         }
2105 
2106         return (B_FALSE);
2107 }
2108 
2109 static void
2110 zio_ddt_child_write_ready(zio_t *zio)
2111 {
2112         int p = zio->io_prop.zp_copies;
2113         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2114         ddt_entry_t *dde = zio->io_private;
2115         ddt_phys_t *ddp = &dde->dde_phys[p];
2116         zio_t *pio;
2117 
2118         if (zio->io_error)
2119                 return;
2120 
2121         ddt_enter(ddt);
2122 
2123         ASSERT(dde->dde_lead_zio[p] == zio);
2124 
2125         ddt_phys_fill(ddp, zio->io_bp);
2126 
2127         while ((pio = zio_walk_parents(zio)) != NULL)
2128                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2129 
2130         ddt_exit(ddt);
2131 }
2132 
2133 static void
2134 zio_ddt_child_write_done(zio_t *zio)
2135 {
2136         int p = zio->io_prop.zp_copies;
2137         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2138         ddt_entry_t *dde = zio->io_private;
2139         ddt_phys_t *ddp = &dde->dde_phys[p];
2140 
2141         ddt_enter(ddt);
2142 
2143         ASSERT(ddp->ddp_refcnt == 0);
2144         ASSERT(dde->dde_lead_zio[p] == zio);
2145         dde->dde_lead_zio[p] = NULL;
2146 
2147         if (zio->io_error == 0) {
2148                 while (zio_walk_parents(zio) != NULL)
2149                         ddt_phys_addref(ddp);
2150         } else {
2151                 ddt_phys_clear(ddp);
2152         }
2153 
2154         ddt_exit(ddt);
2155 }
2156 
2157 static void
2158 zio_ddt_ditto_write_done(zio_t *zio)
2159 {
2160         int p = DDT_PHYS_DITTO;
2161         zio_prop_t *zp = &zio->io_prop;
2162         blkptr_t *bp = zio->io_bp;
2163         ddt_t *ddt = ddt_select(zio->io_spa, bp);
2164         ddt_entry_t *dde = zio->io_private;
2165         ddt_phys_t *ddp = &dde->dde_phys[p];
2166         ddt_key_t *ddk = &dde->dde_key;
2167 
2168         ddt_enter(ddt);
2169 
2170         ASSERT(ddp->ddp_refcnt == 0);
2171         ASSERT(dde->dde_lead_zio[p] == zio);
2172         dde->dde_lead_zio[p] = NULL;
2173 
2174         if (zio->io_error == 0) {
2175                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2176                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2177                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2178                 if (ddp->ddp_phys_birth != 0)
2179                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2180                 ddt_phys_fill(ddp, bp);
2181         }
2182 
2183         ddt_exit(ddt);
2184 }
2185 
2186 static int
2187 zio_ddt_write(zio_t *zio)
2188 {
2189         spa_t *spa = zio->io_spa;
2190         blkptr_t *bp = zio->io_bp;
2191         uint64_t txg = zio->io_txg;
2192         zio_prop_t *zp = &zio->io_prop;
2193         int p = zp->zp_copies;
2194         int ditto_copies;
2195         zio_t *cio = NULL;
2196         zio_t *dio = NULL;
2197         ddt_t *ddt = ddt_select(spa, bp);
2198         ddt_entry_t *dde;
2199         ddt_phys_t *ddp;
2200 
2201         ASSERT(BP_GET_DEDUP(bp));
2202         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2203         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2204 
2205         ddt_enter(ddt);
2206         dde = ddt_lookup(ddt, bp, B_TRUE);
2207         ddp = &dde->dde_phys[p];
2208 
2209         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2210                 /*
2211                  * If we're using a weak checksum, upgrade to a strong checksum
2212                  * and try again.  If we're already using a strong checksum,
2213                  * we can't resolve it, so just convert to an ordinary write.
2214                  * (And automatically e-mail a paper to Nature?)
2215                  */
2216                 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2217                         zp->zp_checksum = spa_dedup_checksum(spa);
2218                         zio_pop_transforms(zio);
2219                         zio->io_stage = ZIO_STAGE_OPEN;
2220                         BP_ZERO(bp);
2221                 } else {
2222                         zp->zp_dedup = B_FALSE;
2223                 }
2224                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2225                 ddt_exit(ddt);
2226                 return (ZIO_PIPELINE_CONTINUE);
2227         }
2228 
2229         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2230         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2231 
2232         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2233             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2234                 zio_prop_t czp = *zp;
2235 
2236                 czp.zp_copies = ditto_copies;
2237 
2238                 /*
2239                  * If we arrived here with an override bp, we won't have run
2240                  * the transform stack, so we won't have the data we need to
2241                  * generate a child i/o.  So, toss the override bp and restart.
2242                  * This is safe, because using the override bp is just an
2243                  * optimization; and it's rare, so the cost doesn't matter.
2244                  */
2245                 if (zio->io_bp_override) {
2246                         zio_pop_transforms(zio);
2247                         zio->io_stage = ZIO_STAGE_OPEN;
2248                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2249                         zio->io_bp_override = NULL;
2250                         BP_ZERO(bp);
2251                         ddt_exit(ddt);
2252                         return (ZIO_PIPELINE_CONTINUE);
2253                 }
2254 
2255                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2256                     zio->io_orig_size, &czp, NULL, NULL,
2257                     zio_ddt_ditto_write_done, dde, zio->io_priority,
2258                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2259 
2260                 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2261                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2262         }
2263 
2264         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2265                 if (ddp->ddp_phys_birth != 0)
2266                         ddt_bp_fill(ddp, bp, txg);
2267                 if (dde->dde_lead_zio[p] != NULL)
2268                         zio_add_child(zio, dde->dde_lead_zio[p]);
2269                 else
2270                         ddt_phys_addref(ddp);
2271         } else if (zio->io_bp_override) {
2272                 ASSERT(bp->blk_birth == txg);
2273                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2274                 ddt_phys_fill(ddp, bp);
2275                 ddt_phys_addref(ddp);
2276         } else {
2277                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2278                     zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2279                     zio_ddt_child_write_done, dde, zio->io_priority,
2280                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2281 
2282                 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2283                 dde->dde_lead_zio[p] = cio;
2284         }
2285 
2286         ddt_exit(ddt);
2287 
2288         if (cio)
2289                 zio_nowait(cio);
2290         if (dio)
2291                 zio_nowait(dio);
2292 
2293         return (ZIO_PIPELINE_CONTINUE);
2294 }
2295 
2296 ddt_entry_t *freedde; /* for debugging */
2297 
2298 static int
2299 zio_ddt_free(zio_t *zio)
2300 {
2301         spa_t *spa = zio->io_spa;
2302         blkptr_t *bp = zio->io_bp;
2303         ddt_t *ddt = ddt_select(spa, bp);
2304         ddt_entry_t *dde;
2305         ddt_phys_t *ddp;
2306 
2307         ASSERT(BP_GET_DEDUP(bp));
2308         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2309 
2310         ddt_enter(ddt);
2311         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2312         ddp = ddt_phys_select(dde, bp);
2313         ddt_phys_decref(ddp);
2314         ddt_exit(ddt);
2315 
2316         return (ZIO_PIPELINE_CONTINUE);
2317 }
2318 
2319 /*
2320  * ==========================================================================
2321  * Allocate and free blocks
2322  * ==========================================================================
2323  */
2324 static int
2325 zio_dva_allocate(zio_t *zio)
2326 {
2327         spa_t *spa = zio->io_spa;
2328         metaslab_class_t *mc = spa_normal_class(spa);
2329         blkptr_t *bp = zio->io_bp;
2330         int error;
2331         int flags = 0;
2332 
2333         if (zio->io_gang_leader == NULL) {
2334                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2335                 zio->io_gang_leader = zio;
2336         }
2337 
2338         ASSERT(BP_IS_HOLE(bp));
2339         ASSERT0(BP_GET_NDVAS(bp));
2340         ASSERT3U(zio->io_prop.zp_copies, >, 0);
2341         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2342         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2343 
2344         /*
2345          * The dump device does not support gang blocks so allocation on
2346          * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2347          * the "fast" gang feature.
2348          */
2349         flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2350         flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2351             METASLAB_GANG_CHILD : 0;
2352         error = metaslab_alloc(spa, mc, zio->io_size, bp,
2353             zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2354 
2355         if (error) {
2356                 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2357                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2358                     error);
2359                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2360                         return (zio_write_gang_block(zio));
2361                 zio->io_error = error;
2362         }
2363 
2364         return (ZIO_PIPELINE_CONTINUE);
2365 }
2366 
2367 static int
2368 zio_dva_free(zio_t *zio)
2369 {
2370         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2371 
2372         return (ZIO_PIPELINE_CONTINUE);
2373 }
2374 
2375 static int
2376 zio_dva_claim(zio_t *zio)
2377 {
2378         int error;
2379 
2380         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2381         if (error)
2382                 zio->io_error = error;
2383 
2384         return (ZIO_PIPELINE_CONTINUE);
2385 }
2386 
2387 /*
2388  * Undo an allocation.  This is used by zio_done() when an I/O fails
2389  * and we want to give back the block we just allocated.
2390  * This handles both normal blocks and gang blocks.
2391  */
2392 static void
2393 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2394 {
2395         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2396         ASSERT(zio->io_bp_override == NULL);
2397 
2398         if (!BP_IS_HOLE(bp))
2399                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2400 
2401         if (gn != NULL) {
2402                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2403                         zio_dva_unallocate(zio, gn->gn_child[g],
2404                             &gn->gn_gbh->zg_blkptr[g]);
2405                 }
2406         }
2407 }
2408 
2409 /*
2410  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2411  */
2412 int
2413 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2414     uint64_t size, boolean_t use_slog)
2415 {
2416         int error = 1;
2417 
2418         ASSERT(txg > spa_syncing_txg(spa));
2419 
2420         /*
2421          * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2422          * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2423          * when allocating them.
2424          */
2425         if (use_slog) {
2426                 error = metaslab_alloc(spa, spa_log_class(spa), size,
2427                     new_bp, 1, txg, old_bp,
2428                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2429         }
2430 
2431         if (error) {
2432                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2433                     new_bp, 1, txg, old_bp,
2434                     METASLAB_HINTBP_AVOID);
2435         }
2436 
2437         if (error == 0) {
2438                 BP_SET_LSIZE(new_bp, size);
2439                 BP_SET_PSIZE(new_bp, size);
2440                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2441                 BP_SET_CHECKSUM(new_bp,
2442                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2443                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2444                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2445                 BP_SET_LEVEL(new_bp, 0);
2446                 BP_SET_DEDUP(new_bp, 0);
2447                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2448         }
2449 
2450         return (error);
2451 }
2452 
2453 /*
2454  * Free an intent log block.
2455  */
2456 void
2457 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2458 {
2459         ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2460         ASSERT(!BP_IS_GANG(bp));
2461 
2462         zio_free(spa, txg, bp);
2463 }
2464 
2465 /*
2466  * ==========================================================================
2467  * Read and write to physical devices
2468  * ==========================================================================
2469  */
2470 static int
2471 zio_vdev_io_start(zio_t *zio)
2472 {
2473         vdev_t *vd = zio->io_vd;
2474         uint64_t align;
2475         spa_t *spa = zio->io_spa;
2476 
2477         ASSERT(zio->io_error == 0);
2478         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2479 
2480         if (vd == NULL) {
2481                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2482                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2483 
2484                 /*
2485                  * The mirror_ops handle multiple DVAs in a single BP.
2486                  */
2487                 return (vdev_mirror_ops.vdev_op_io_start(zio));
2488         }
2489 
2490         /*
2491          * We keep track of time-sensitive I/Os so that the scan thread
2492          * can quickly react to certain workloads.  In particular, we care
2493          * about non-scrubbing, top-level reads and writes with the following
2494          * characteristics:
2495          *      - synchronous writes of user data to non-slog devices
2496          *      - any reads of user data
2497          * When these conditions are met, adjust the timestamp of spa_last_io
2498          * which allows the scan thread to adjust its workload accordingly.
2499          */
2500         if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2501             vd == vd->vdev_top && !vd->vdev_islog &&
2502             zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2503             zio->io_txg != spa_syncing_txg(spa)) {
2504                 uint64_t old = spa->spa_last_io;
2505                 uint64_t new = ddi_get_lbolt64();
2506                 if (old != new)
2507                         (void) atomic_cas_64(&spa->spa_last_io, old, new);
2508         }
2509 
2510         align = 1ULL << vd->vdev_top->vdev_ashift;
2511 
2512         if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2513             P2PHASE(zio->io_size, align) != 0) {
2514                 /* Transform logical writes to be a full physical block size. */
2515                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2516                 char *abuf = zio_buf_alloc(asize);
2517                 ASSERT(vd == vd->vdev_top);
2518                 if (zio->io_type == ZIO_TYPE_WRITE) {
2519                         bcopy(zio->io_data, abuf, zio->io_size);
2520                         bzero(abuf + zio->io_size, asize - zio->io_size);
2521                 }
2522                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2523         }
2524 
2525         /*
2526          * If this is not a physical io, make sure that it is properly aligned
2527          * before proceeding.
2528          */
2529         if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2530                 ASSERT0(P2PHASE(zio->io_offset, align));
2531                 ASSERT0(P2PHASE(zio->io_size, align));
2532         } else {
2533                 /*
2534                  * For physical writes, we allow 512b aligned writes and assume
2535                  * the device will perform a read-modify-write as necessary.
2536                  */
2537                 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2538                 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2539         }
2540 
2541         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2542 
2543         /*
2544          * If this is a repair I/O, and there's no self-healing involved --
2545          * that is, we're just resilvering what we expect to resilver --
2546          * then don't do the I/O unless zio's txg is actually in vd's DTL.
2547          * This prevents spurious resilvering with nested replication.
2548          * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2549          * A is out of date, we'll read from C+D, then use the data to
2550          * resilver A+B -- but we don't actually want to resilver B, just A.
2551          * The top-level mirror has no way to know this, so instead we just
2552          * discard unnecessary repairs as we work our way down the vdev tree.
2553          * The same logic applies to any form of nested replication:
2554          * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2555          */
2556         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2557             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2558             zio->io_txg != 0 &&      /* not a delegated i/o */
2559             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2560                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2561                 zio_vdev_io_bypass(zio);
2562                 return (ZIO_PIPELINE_CONTINUE);
2563         }
2564 
2565         if (vd->vdev_ops->vdev_op_leaf &&
2566             (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2567 
2568                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2569                         return (ZIO_PIPELINE_CONTINUE);
2570 
2571                 if ((zio = vdev_queue_io(zio)) == NULL)
2572                         return (ZIO_PIPELINE_STOP);
2573 
2574                 if (!vdev_accessible(vd, zio)) {
2575                         zio->io_error = SET_ERROR(ENXIO);
2576                         zio_interrupt(zio);
2577                         return (ZIO_PIPELINE_STOP);
2578                 }
2579         }
2580 
2581         return (vd->vdev_ops->vdev_op_io_start(zio));
2582 }
2583 
2584 static int
2585 zio_vdev_io_done(zio_t *zio)
2586 {
2587         vdev_t *vd = zio->io_vd;
2588         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2589         boolean_t unexpected_error = B_FALSE;
2590 
2591         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2592                 return (ZIO_PIPELINE_STOP);
2593 
2594         ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2595 
2596         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2597 
2598                 vdev_queue_io_done(zio);
2599 
2600                 if (zio->io_type == ZIO_TYPE_WRITE)
2601                         vdev_cache_write(zio);
2602 
2603                 if (zio_injection_enabled && zio->io_error == 0)
2604                         zio->io_error = zio_handle_device_injection(vd,
2605                             zio, EIO);
2606 
2607                 if (zio_injection_enabled && zio->io_error == 0)
2608                         zio->io_error = zio_handle_label_injection(zio, EIO);
2609 
2610                 if (zio->io_error) {
2611                         if (!vdev_accessible(vd, zio)) {
2612                                 zio->io_error = SET_ERROR(ENXIO);
2613                         } else {
2614                                 unexpected_error = B_TRUE;
2615                         }
2616                 }
2617         }
2618 
2619         ops->vdev_op_io_done(zio);
2620 
2621         if (unexpected_error)
2622                 VERIFY(vdev_probe(vd, zio) == NULL);
2623 
2624         return (ZIO_PIPELINE_CONTINUE);
2625 }
2626 
2627 /*
2628  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2629  * disk, and use that to finish the checksum ereport later.
2630  */
2631 static void
2632 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2633     const void *good_buf)
2634 {
2635         /* no processing needed */
2636         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2637 }
2638 
2639 /*ARGSUSED*/
2640 void
2641 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2642 {
2643         void *buf = zio_buf_alloc(zio->io_size);
2644 
2645         bcopy(zio->io_data, buf, zio->io_size);
2646 
2647         zcr->zcr_cbinfo = zio->io_size;
2648         zcr->zcr_cbdata = buf;
2649         zcr->zcr_finish = zio_vsd_default_cksum_finish;
2650         zcr->zcr_free = zio_buf_free;
2651 }
2652 
2653 static int
2654 zio_vdev_io_assess(zio_t *zio)
2655 {
2656         vdev_t *vd = zio->io_vd;
2657 
2658         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2659                 return (ZIO_PIPELINE_STOP);
2660 
2661         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2662                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2663 
2664         if (zio->io_vsd != NULL) {
2665                 zio->io_vsd_ops->vsd_free(zio);
2666                 zio->io_vsd = NULL;
2667         }
2668 
2669         if (zio_injection_enabled && zio->io_error == 0)
2670                 zio->io_error = zio_handle_fault_injection(zio, EIO);
2671 
2672         /*
2673          * If the I/O failed, determine whether we should attempt to retry it.
2674          *
2675          * On retry, we cut in line in the issue queue, since we don't want
2676          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2677          */
2678         if (zio->io_error && vd == NULL &&
2679             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2680                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
2681                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
2682                 zio->io_error = 0;
2683                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2684                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2685                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2686                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2687                     zio_requeue_io_start_cut_in_line);
2688                 return (ZIO_PIPELINE_STOP);
2689         }
2690 
2691         /*
2692          * If we got an error on a leaf device, convert it to ENXIO
2693          * if the device is not accessible at all.
2694          */
2695         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2696             !vdev_accessible(vd, zio))
2697                 zio->io_error = SET_ERROR(ENXIO);
2698 
2699         /*
2700          * If we can't write to an interior vdev (mirror or RAID-Z),
2701          * set vdev_cant_write so that we stop trying to allocate from it.
2702          */
2703         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2704             vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2705                 vd->vdev_cant_write = B_TRUE;
2706         }
2707 
2708         if (zio->io_error)
2709                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2710 
2711         if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2712             zio->io_physdone != NULL) {
2713                 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2714                 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2715                 zio->io_physdone(zio->io_logical);
2716         }
2717 
2718         return (ZIO_PIPELINE_CONTINUE);
2719 }
2720 
2721 void
2722 zio_vdev_io_reissue(zio_t *zio)
2723 {
2724         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2725         ASSERT(zio->io_error == 0);
2726 
2727         zio->io_stage >>= 1;
2728 }
2729 
2730 void
2731 zio_vdev_io_redone(zio_t *zio)
2732 {
2733         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2734 
2735         zio->io_stage >>= 1;
2736 }
2737 
2738 void
2739 zio_vdev_io_bypass(zio_t *zio)
2740 {
2741         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2742         ASSERT(zio->io_error == 0);
2743 
2744         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2745         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2746 }
2747 
2748 /*
2749  * ==========================================================================
2750  * Generate and verify checksums
2751  * ==========================================================================
2752  */
2753 static int
2754 zio_checksum_generate(zio_t *zio)
2755 {
2756         blkptr_t *bp = zio->io_bp;
2757         enum zio_checksum checksum;
2758 
2759         if (bp == NULL) {
2760                 /*
2761                  * This is zio_write_phys().
2762                  * We're either generating a label checksum, or none at all.
2763                  */
2764                 checksum = zio->io_prop.zp_checksum;
2765 
2766                 if (checksum == ZIO_CHECKSUM_OFF)
2767                         return (ZIO_PIPELINE_CONTINUE);
2768 
2769                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2770         } else {
2771                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2772                         ASSERT(!IO_IS_ALLOCATING(zio));
2773                         checksum = ZIO_CHECKSUM_GANG_HEADER;
2774                 } else {
2775                         checksum = BP_GET_CHECKSUM(bp);
2776                 }
2777         }
2778 
2779         zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2780 
2781         return (ZIO_PIPELINE_CONTINUE);
2782 }
2783 
2784 static int
2785 zio_checksum_verify(zio_t *zio)
2786 {
2787         zio_bad_cksum_t info;
2788         blkptr_t *bp = zio->io_bp;
2789         int error;
2790 
2791         ASSERT(zio->io_vd != NULL);
2792 
2793         if (bp == NULL) {
2794                 /*
2795                  * This is zio_read_phys().
2796                  * We're either verifying a label checksum, or nothing at all.
2797                  */
2798                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2799                         return (ZIO_PIPELINE_CONTINUE);
2800 
2801                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2802         }
2803 
2804         if ((error = zio_checksum_error(zio, &info)) != 0) {
2805                 zio->io_error = error;
2806                 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2807                         zfs_ereport_start_checksum(zio->io_spa,
2808                             zio->io_vd, zio, zio->io_offset,
2809                             zio->io_size, NULL, &info);
2810                 }
2811         }
2812 
2813         return (ZIO_PIPELINE_CONTINUE);
2814 }
2815 
2816 /*
2817  * Called by RAID-Z to ensure we don't compute the checksum twice.
2818  */
2819 void
2820 zio_checksum_verified(zio_t *zio)
2821 {
2822         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2823 }
2824 
2825 /*
2826  * ==========================================================================
2827  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2828  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
2829  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2830  * indicate errors that are specific to one I/O, and most likely permanent.
2831  * Any other error is presumed to be worse because we weren't expecting it.
2832  * ==========================================================================
2833  */
2834 int
2835 zio_worst_error(int e1, int e2)
2836 {
2837         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2838         int r1, r2;
2839 
2840         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2841                 if (e1 == zio_error_rank[r1])
2842                         break;
2843 
2844         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2845                 if (e2 == zio_error_rank[r2])
2846                         break;
2847 
2848         return (r1 > r2 ? e1 : e2);
2849 }
2850 
2851 /*
2852  * ==========================================================================
2853  * I/O completion
2854  * ==========================================================================
2855  */
2856 static int
2857 zio_ready(zio_t *zio)
2858 {
2859         blkptr_t *bp = zio->io_bp;
2860         zio_t *pio, *pio_next;
2861 
2862         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2863             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2864                 return (ZIO_PIPELINE_STOP);
2865 
2866         if (zio->io_ready) {
2867                 ASSERT(IO_IS_ALLOCATING(zio));
2868                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2869                     (zio->io_flags & ZIO_FLAG_NOPWRITE));
2870                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2871 
2872                 zio->io_ready(zio);
2873         }
2874 
2875         if (bp != NULL && bp != &zio->io_bp_copy)
2876                 zio->io_bp_copy = *bp;
2877 
2878         if (zio->io_error)
2879                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2880 
2881         mutex_enter(&zio->io_lock);
2882         zio->io_state[ZIO_WAIT_READY] = 1;
2883         pio = zio_walk_parents(zio);
2884         mutex_exit(&zio->io_lock);
2885 
2886         /*
2887          * As we notify zio's parents, new parents could be added.
2888          * New parents go to the head of zio's io_parent_list, however,
2889          * so we will (correctly) not notify them.  The remainder of zio's
2890          * io_parent_list, from 'pio_next' onward, cannot change because
2891          * all parents must wait for us to be done before they can be done.
2892          */
2893         for (; pio != NULL; pio = pio_next) {
2894                 pio_next = zio_walk_parents(zio);
2895                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2896         }
2897 
2898         if (zio->io_flags & ZIO_FLAG_NODATA) {
2899                 if (BP_IS_GANG(bp)) {
2900                         zio->io_flags &= ~ZIO_FLAG_NODATA;
2901                 } else {
2902                         ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2903                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2904                 }
2905         }
2906 
2907         if (zio_injection_enabled &&
2908             zio->io_spa->spa_syncing_txg == zio->io_txg)
2909                 zio_handle_ignored_writes(zio);
2910 
2911         return (ZIO_PIPELINE_CONTINUE);
2912 }
2913 
2914 static int
2915 zio_done(zio_t *zio)
2916 {
2917         spa_t *spa = zio->io_spa;
2918         zio_t *lio = zio->io_logical;
2919         blkptr_t *bp = zio->io_bp;
2920         vdev_t *vd = zio->io_vd;
2921         uint64_t psize = zio->io_size;
2922         zio_t *pio, *pio_next;
2923 
2924         /*
2925          * If our children haven't all completed,
2926          * wait for them and then repeat this pipeline stage.
2927          */
2928         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2929             zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2930             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2931             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2932                 return (ZIO_PIPELINE_STOP);
2933 
2934         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2935                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2936                         ASSERT(zio->io_children[c][w] == 0);
2937 
2938         if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
2939                 ASSERT(bp->blk_pad[0] == 0);
2940                 ASSERT(bp->blk_pad[1] == 0);
2941                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2942                     (bp == zio_unique_parent(zio)->io_bp));
2943                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2944                     zio->io_bp_override == NULL &&
2945                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2946                         ASSERT(!BP_SHOULD_BYTESWAP(bp));
2947                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2948                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
2949                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2950                 }
2951                 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2952                         VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2953         }
2954 
2955         /*
2956          * If there were child vdev/gang/ddt errors, they apply to us now.
2957          */
2958         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2959         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2960         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2961 
2962         /*
2963          * If the I/O on the transformed data was successful, generate any
2964          * checksum reports now while we still have the transformed data.
2965          */
2966         if (zio->io_error == 0) {
2967                 while (zio->io_cksum_report != NULL) {
2968                         zio_cksum_report_t *zcr = zio->io_cksum_report;
2969                         uint64_t align = zcr->zcr_align;
2970                         uint64_t asize = P2ROUNDUP(psize, align);
2971                         char *abuf = zio->io_data;
2972 
2973                         if (asize != psize) {
2974                                 abuf = zio_buf_alloc(asize);
2975                                 bcopy(zio->io_data, abuf, psize);
2976                                 bzero(abuf + psize, asize - psize);
2977                         }
2978 
2979                         zio->io_cksum_report = zcr->zcr_next;
2980                         zcr->zcr_next = NULL;
2981                         zcr->zcr_finish(zcr, abuf);
2982                         zfs_ereport_free_checksum(zcr);
2983 
2984                         if (asize != psize)
2985                                 zio_buf_free(abuf, asize);
2986                 }
2987         }
2988 
2989         zio_pop_transforms(zio);        /* note: may set zio->io_error */
2990 
2991         vdev_stat_update(zio, psize);
2992 
2993         if (zio->io_error) {
2994                 /*
2995                  * If this I/O is attached to a particular vdev,
2996                  * generate an error message describing the I/O failure
2997                  * at the block level.  We ignore these errors if the
2998                  * device is currently unavailable.
2999                  */
3000                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3001                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3002 
3003                 if ((zio->io_error == EIO || !(zio->io_flags &
3004                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3005                     zio == lio) {
3006                         /*
3007                          * For logical I/O requests, tell the SPA to log the
3008                          * error and generate a logical data ereport.
3009                          */
3010                         spa_log_error(spa, zio);
3011                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3012                             0, 0);
3013                 }
3014         }
3015 
3016         if (zio->io_error && zio == lio) {
3017                 /*
3018                  * Determine whether zio should be reexecuted.  This will
3019                  * propagate all the way to the root via zio_notify_parent().
3020                  */
3021                 ASSERT(vd == NULL && bp != NULL);
3022                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3023 
3024                 if (IO_IS_ALLOCATING(zio) &&
3025                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3026                         if (zio->io_error != ENOSPC)
3027                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3028                         else
3029                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3030                 }
3031 
3032                 if ((zio->io_type == ZIO_TYPE_READ ||
3033                     zio->io_type == ZIO_TYPE_FREE) &&
3034                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3035                     zio->io_error == ENXIO &&
3036                     spa_load_state(spa) == SPA_LOAD_NONE &&
3037                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3038                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3039 
3040                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3041                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3042 
3043                 /*
3044                  * Here is a possibly good place to attempt to do
3045                  * either combinatorial reconstruction or error correction
3046                  * based on checksums.  It also might be a good place
3047                  * to send out preliminary ereports before we suspend
3048                  * processing.
3049                  */
3050         }
3051 
3052         /*
3053          * If there were logical child errors, they apply to us now.
3054          * We defer this until now to avoid conflating logical child
3055          * errors with errors that happened to the zio itself when
3056          * updating vdev stats and reporting FMA events above.
3057          */
3058         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3059 
3060         if ((zio->io_error || zio->io_reexecute) &&
3061             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3062             !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3063                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3064 
3065         zio_gang_tree_free(&zio->io_gang_tree);
3066 
3067         /*
3068          * Godfather I/Os should never suspend.
3069          */
3070         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3071             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3072                 zio->io_reexecute = 0;
3073 
3074         if (zio->io_reexecute) {
3075                 /*
3076                  * This is a logical I/O that wants to reexecute.
3077                  *
3078                  * Reexecute is top-down.  When an i/o fails, if it's not
3079                  * the root, it simply notifies its parent and sticks around.
3080                  * The parent, seeing that it still has children in zio_done(),
3081                  * does the same.  This percolates all the way up to the root.
3082                  * The root i/o will reexecute or suspend the entire tree.
3083                  *
3084                  * This approach ensures that zio_reexecute() honors
3085                  * all the original i/o dependency relationships, e.g.
3086                  * parents not executing until children are ready.
3087                  */
3088                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3089 
3090                 zio->io_gang_leader = NULL;
3091 
3092                 mutex_enter(&zio->io_lock);
3093                 zio->io_state[ZIO_WAIT_DONE] = 1;
3094                 mutex_exit(&zio->io_lock);
3095 
3096                 /*
3097                  * "The Godfather" I/O monitors its children but is
3098                  * not a true parent to them. It will track them through
3099                  * the pipeline but severs its ties whenever they get into
3100                  * trouble (e.g. suspended). This allows "The Godfather"
3101                  * I/O to return status without blocking.
3102                  */
3103                 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3104                         zio_link_t *zl = zio->io_walk_link;
3105                         pio_next = zio_walk_parents(zio);
3106 
3107                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3108                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3109                                 zio_remove_child(pio, zio, zl);
3110                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3111                         }
3112                 }
3113 
3114                 if ((pio = zio_unique_parent(zio)) != NULL) {
3115                         /*
3116                          * We're not a root i/o, so there's nothing to do
3117                          * but notify our parent.  Don't propagate errors
3118                          * upward since we haven't permanently failed yet.
3119                          */
3120                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3121                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3122                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3123                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3124                         /*
3125                          * We'd fail again if we reexecuted now, so suspend
3126                          * until conditions improve (e.g. device comes online).
3127                          */
3128                         zio_suspend(spa, zio);
3129                 } else {
3130                         /*
3131                          * Reexecution is potentially a huge amount of work.
3132                          * Hand it off to the otherwise-unused claim taskq.
3133                          */
3134                         ASSERT(zio->io_tqent.tqent_next == NULL);
3135                         spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3136                             ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3137                             0, &zio->io_tqent);
3138                 }
3139                 return (ZIO_PIPELINE_STOP);
3140         }
3141 
3142         ASSERT(zio->io_child_count == 0);
3143         ASSERT(zio->io_reexecute == 0);
3144         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3145 
3146         /*
3147          * Report any checksum errors, since the I/O is complete.
3148          */
3149         while (zio->io_cksum_report != NULL) {
3150                 zio_cksum_report_t *zcr = zio->io_cksum_report;
3151                 zio->io_cksum_report = zcr->zcr_next;
3152                 zcr->zcr_next = NULL;
3153                 zcr->zcr_finish(zcr, NULL);
3154                 zfs_ereport_free_checksum(zcr);
3155         }
3156 
3157         /*
3158          * It is the responsibility of the done callback to ensure that this
3159          * particular zio is no longer discoverable for adoption, and as
3160          * such, cannot acquire any new parents.
3161          */
3162         if (zio->io_done)
3163                 zio->io_done(zio);
3164 
3165         mutex_enter(&zio->io_lock);
3166         zio->io_state[ZIO_WAIT_DONE] = 1;
3167         mutex_exit(&zio->io_lock);
3168 
3169         for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3170                 zio_link_t *zl = zio->io_walk_link;
3171                 pio_next = zio_walk_parents(zio);
3172                 zio_remove_child(pio, zio, zl);
3173                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3174         }
3175 
3176         if (zio->io_waiter != NULL) {
3177                 mutex_enter(&zio->io_lock);
3178                 zio->io_executor = NULL;
3179                 cv_broadcast(&zio->io_cv);
3180                 mutex_exit(&zio->io_lock);
3181         } else {
3182                 zio_destroy(zio);
3183         }
3184 
3185         return (ZIO_PIPELINE_STOP);
3186 }
3187 
3188 /*
3189  * ==========================================================================
3190  * I/O pipeline definition
3191  * ==========================================================================
3192  */
3193 static zio_pipe_stage_t *zio_pipeline[] = {
3194         NULL,
3195         zio_read_bp_init,
3196         zio_free_bp_init,
3197         zio_issue_async,
3198         zio_write_bp_init,
3199         zio_checksum_generate,
3200         zio_nop_write,
3201         zio_ddt_read_start,
3202         zio_ddt_read_done,
3203         zio_ddt_write,
3204         zio_ddt_free,
3205         zio_gang_assemble,
3206         zio_gang_issue,
3207         zio_dva_allocate,
3208         zio_dva_free,
3209         zio_dva_claim,
3210         zio_ready,
3211         zio_vdev_io_start,
3212         zio_vdev_io_done,
3213         zio_vdev_io_assess,
3214         zio_checksum_verify,
3215         zio_done
3216 };
3217 
3218 /* dnp is the dnode for zb1->zb_object */
3219 boolean_t
3220 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3221     const zbookmark_phys_t *zb2)
3222 {
3223         uint64_t zb1nextL0, zb2thisobj;
3224 
3225         ASSERT(zb1->zb_objset == zb2->zb_objset);
3226         ASSERT(zb2->zb_level == 0);
3227 
3228         /* The objset_phys_t isn't before anything. */
3229         if (dnp == NULL)
3230                 return (B_FALSE);
3231 
3232         zb1nextL0 = (zb1->zb_blkid + 1) <<
3233             ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3234 
3235         zb2thisobj = zb2->zb_object ? zb2->zb_object :
3236             zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3237 
3238         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3239                 uint64_t nextobj = zb1nextL0 *
3240                     (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3241                 return (nextobj <= zb2thisobj);
3242         }
3243 
3244         if (zb1->zb_object < zb2thisobj)
3245                 return (B_TRUE);
3246         if (zb1->zb_object > zb2thisobj)
3247                 return (B_FALSE);
3248         if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3249                 return (B_FALSE);
3250         return (zb1nextL0 <= zb2->zb_blkid);
3251 }
--- EOF ---