1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * hermon_cfg.c 28 * Hermon Configuration Profile Routines 29 * 30 * Implements the routines necessary for initializing and (later) tearing 31 * down the list of Hermon configuration information. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/conf.h> 36 #include <sys/ddi.h> 37 #include <sys/sunddi.h> 38 #include <sys/modctl.h> 39 #include <sys/bitmap.h> 40 41 #include <sys/ib/adapters/hermon/hermon.h> 42 43 /* 44 * Below are the elements that make up the Hermon configuration profile. 45 * For advanced users who wish to alter these values, this can be done via 46 * the /etc/system file. By default, values are assigned to the number of 47 * supported resources, either from the HCA's reported capacities or by 48 * a by-design limit in the driver. 49 */ 50 51 /* Number of supported QPs, CQs and SRQs */ 52 uint32_t hermon_log_num_qp = HERMON_NUM_QP_SHIFT; 53 uint32_t hermon_log_num_cq = HERMON_NUM_CQ_SHIFT; 54 uint32_t hermon_log_num_srq = HERMON_NUM_SRQ_SHIFT; 55 56 /* Number of supported SGL per WQE for SQ/RQ, and for SRQ */ 57 /* XXX use the same for all queues if limitation in srq.h is resolved */ 58 uint32_t hermon_wqe_max_sgl = HERMON_NUM_SGL_PER_WQE; 59 uint32_t hermon_srq_max_sgl = HERMON_SRQ_MAX_SGL; 60 61 /* Maximum "responder resources" (in) and "initiator depth" (out) per QP */ 62 uint32_t hermon_log_num_rdb_per_qp = HERMON_LOG_NUM_RDB_PER_QP; 63 64 /* 65 * Number of multicast groups (MCGs), number of QP per MCG, and the number 66 * of entries (from the total number) in the multicast group "hash table" 67 */ 68 uint32_t hermon_log_num_mcg = HERMON_NUM_MCG_SHIFT; 69 uint32_t hermon_num_qp_per_mcg = HERMON_NUM_QP_PER_MCG; 70 uint32_t hermon_log_num_mcg_hash = HERMON_NUM_MCG_HASH_SHIFT; 71 72 /* Number of UD AVs */ 73 uint32_t hermon_log_num_ah = HERMON_NUM_AH_SHIFT; 74 75 /* Number of EQs and their default size */ 76 uint32_t hermon_log_num_eq = HERMON_NUM_EQ_SHIFT; 77 uint32_t hermon_log_eq_sz = HERMON_DEFAULT_EQ_SZ_SHIFT; 78 79 /* 80 * Number of supported MPTs, MTTs and also the maximum MPT size. 81 */ 82 uint32_t hermon_log_num_mtt = HERMON_NUM_MTT_SHIFT; 83 uint32_t hermon_log_num_dmpt = HERMON_NUM_DMPT_SHIFT; 84 uint32_t hermon_log_max_mrw_sz = HERMON_MAX_MEM_MPT_SHIFT; 85 86 /* 87 * Number of supported UAR (User Access Regions) for this HCA. 88 * We could in the future read in uar_sz from devlim, and thus 89 * derive the number of UAR. Since this is derived from PAGESIZE, 90 * however, this means that x86 systems would have twice as many 91 * UARs as SPARC systems. Therefore for consistency's sake, we will 92 * just use 1024 pages, which is the maximum on SPARC systems. 93 */ 94 uint32_t hermon_log_num_uar = HERMON_NUM_UAR_SHIFT; 95 96 /* 97 * Number of remaps allowed for FMR before a sync is required. This value 98 * determines how many times we can fmr_deregister() before the underlying fmr 99 * framework places the region to wait for an MTT_SYNC operation, cleaning up 100 * the old mappings. 101 */ 102 uint32_t hermon_fmr_num_remaps = HERMON_FMR_MAX_REMAPS; 103 104 /* 105 * Number of supported Hermon mailboxes ("In" and "Out") and their maximum 106 * sizes, respectively 107 */ 108 uint32_t hermon_log_num_inmbox = HERMON_NUM_MAILBOXES_SHIFT; 109 uint32_t hermon_log_num_outmbox = HERMON_NUM_MAILBOXES_SHIFT; 110 uint32_t hermon_log_inmbox_size = HERMON_MBOX_SIZE_SHIFT; 111 uint32_t hermon_log_outmbox_size = HERMON_MBOX_SIZE_SHIFT; 112 uint32_t hermon_log_num_intr_inmbox = HERMON_NUM_INTR_MAILBOXES_SHIFT; 113 uint32_t hermon_log_num_intr_outmbox = HERMON_NUM_INTR_MAILBOXES_SHIFT; 114 115 /* Number of supported Protection Domains (PD) */ 116 uint32_t hermon_log_num_pd = HERMON_NUM_PD_SHIFT; 117 118 /* 119 * Number of total supported PKeys per PKey table (i.e. 120 * per port). Also the number of SGID per GID table. 121 */ 122 uint32_t hermon_log_max_pkeytbl = HERMON_NUM_PKEYTBL_SHIFT; 123 uint32_t hermon_log_max_gidtbl = HERMON_NUM_GIDTBL_SHIFT; 124 125 /* Maximum supported MTU and portwidth */ 126 uint32_t hermon_max_mtu = HERMON_MAX_MTU; 127 uint32_t hermon_max_port_width = HERMON_MAX_PORT_WIDTH; 128 129 /* Number of supported Virtual Lanes (VL) */ 130 uint32_t hermon_max_vlcap = HERMON_MAX_VLCAP; 131 132 /* 133 * Whether or not to use the built-in (i.e. in firmware) agents for QP0 and 134 * QP1, respectively. 135 */ 136 uint32_t hermon_qp0_agents_in_fw = 0; 137 uint32_t hermon_qp1_agents_in_fw = 0; 138 139 /* 140 * Whether DMA mappings should bypass the PCI IOMMU or not. 141 * hermon_iommu_bypass is a global setting for all memory addresses. 142 */ 143 uint32_t hermon_iommu_bypass = 1; 144 145 /* 146 * Whether *DATA* buffers should be bound w/ Relaxed Ordering (RO) turned on 147 * via the SW workaround (HCAs don't support RO in HW). Defaulted on, 148 * though care must be taken w/ some Userland clients that *MAY* have 149 * peeked in the data to understand when data xfer was done - MPI does 150 * as an efficiency 151 */ 152 153 uint32_t hermon_kernel_data_ro = HERMON_RO_ENABLED; /* default */ 154 uint32_t hermon_user_data_ro = HERMON_RO_ENABLED; /* default */ 155 156 /* 157 * Whether Hermon should use MSI (Message Signaled Interrupts), if available. 158 * Note: 0 indicates 'legacy interrupt', 1 indicates MSI (if available) 159 */ 160 uint32_t hermon_use_msi_if_avail = 1; 161 162 /* 163 * This is a patchable variable that determines the time we will wait after 164 * initiating SW reset before we do our first read from Hermon config space. 165 * If this value is set too small (less than the default 100ms), it is 166 * possible for Hermon hardware to be unready to respond to the config cycle 167 * reads. This could cause master abort on the PCI bridge. Note: If 168 * "hermon_sw_reset_delay" is set to zero, then no software reset of the Hermon 169 * device will be attempted. 170 */ 171 uint32_t hermon_sw_reset_delay = HERMON_SW_RESET_DELAY; 172 173 /* 174 * These are patchable variables for hermon command polling. The poll_delay is 175 * the number of usec to wait in-between calls to poll the 'go' bit. The 176 * poll_max is the total number of usec to loop in waiting for the 'go' bit to 177 * clear. 178 */ 179 uint32_t hermon_cmd_poll_delay = HERMON_CMD_POLL_DELAY; 180 uint32_t hermon_cmd_poll_max = HERMON_CMD_POLL_MAX; 181 182 /* 183 * This is a patchable variable that determines the frequency with which 184 * the AckReq bit will be set in outgoing RC packets. The AckReq bit will be 185 * set in at least every 2^hermon_qp_ackreq_freq packets (but at least once 186 * per message, i.e. in the last packet). Tuning this value can increase 187 * IB fabric utilization by cutting down on the number of unnecessary ACKs. 188 */ 189 uint32_t hermon_qp_ackreq_freq = HERMON_QP_ACKREQ_FREQ; 190 191 static void hermon_cfg_wqe_sizes(hermon_state_t *state, 192 hermon_cfg_profile_t *cp); 193 #ifdef __sparc 194 static void hermon_check_iommu_bypass(hermon_state_t *state, 195 hermon_cfg_profile_t *cp); 196 #endif 197 198 /* 199 * hermon_cfg_profile_init_phase1() 200 * Context: Only called from attach() path context 201 */ 202 int 203 hermon_cfg_profile_init_phase1(hermon_state_t *state) 204 { 205 hermon_cfg_profile_t *cp; 206 207 /* 208 * Allocate space for the configuration profile structure 209 */ 210 cp = (hermon_cfg_profile_t *)kmem_zalloc(sizeof (hermon_cfg_profile_t), 211 KM_SLEEP); 212 213 /* 214 * Common to all profiles. 215 */ 216 cp->cp_qp0_agents_in_fw = hermon_qp0_agents_in_fw; 217 cp->cp_qp1_agents_in_fw = hermon_qp1_agents_in_fw; 218 cp->cp_sw_reset_delay = hermon_sw_reset_delay; 219 cp->cp_cmd_poll_delay = hermon_cmd_poll_delay; 220 cp->cp_cmd_poll_max = hermon_cmd_poll_max; 221 cp->cp_ackreq_freq = hermon_qp_ackreq_freq; 222 cp->cp_fmr_max_remaps = hermon_fmr_num_remaps; 223 224 /* 225 * Although most of the configuration is enabled in "phase2" of the 226 * cfg_profile_init, we have to setup the OUT mailboxes soon, since 227 * they are used immediately after this "phase1" completes, to run the 228 * firmware and get the device limits, which we'll need for 'phase2'. 229 * That's done in rsrc_init_phase1, called shortly after we do this 230 * and the sw reset - see hermon.c 231 */ 232 if (state->hs_cfg_profile_setting == HERMON_CFG_MEMFREE) { 233 cp->cp_log_num_outmbox = hermon_log_num_outmbox; 234 cp->cp_log_outmbox_size = hermon_log_outmbox_size; 235 cp->cp_log_num_inmbox = hermon_log_num_inmbox; 236 cp->cp_log_inmbox_size = hermon_log_inmbox_size; 237 cp->cp_log_num_intr_inmbox = hermon_log_num_intr_inmbox; 238 cp->cp_log_num_intr_outmbox = hermon_log_num_intr_outmbox; 239 240 } else { 241 return (DDI_FAILURE); 242 } 243 244 /* 245 * Set IOMMU bypass or not. Ensure consistency of flags with 246 * architecture type. 247 */ 248 #ifdef __sparc 249 if (hermon_iommu_bypass == 1) { 250 hermon_check_iommu_bypass(state, cp); 251 } else { 252 cp->cp_iommu_bypass = HERMON_BINDMEM_NORMAL; 253 } 254 #else 255 cp->cp_iommu_bypass = HERMON_BINDMEM_NORMAL; 256 #endif 257 258 /* Attach the configuration profile to Hermon softstate */ 259 state->hs_cfg_profile = cp; 260 261 return (DDI_SUCCESS); 262 } 263 264 /* 265 * hermon_cfg_profile_init_phase2() 266 * Context: Only called from attach() path context 267 */ 268 int 269 hermon_cfg_profile_init_phase2(hermon_state_t *state) 270 { 271 hermon_cfg_profile_t *cp; 272 hermon_hw_querydevlim_t *devlim; 273 hermon_hw_query_port_t *port; 274 uint32_t num, size; 275 int i; 276 277 /* Read in the device limits */ 278 devlim = &state->hs_devlim; 279 /* and the port information */ 280 port = &state->hs_queryport; 281 282 /* Read the configuration profile */ 283 cp = state->hs_cfg_profile; 284 285 /* 286 * We configure all Hermon HCAs with the same profile, which 287 * is based upon the default value assignments above. If we want to 288 * add additional profiles in the future, they can be added here. 289 * Note the reference to "Memfree" is a holdover from Arbel/Sinai 290 */ 291 if (state->hs_cfg_profile_setting != HERMON_CFG_MEMFREE) { 292 return (DDI_FAILURE); 293 } 294 295 /* 296 * Note for most configuration parameters, we use the lesser of our 297 * desired configuration value or the device-defined maximum value. 298 */ 299 cp->cp_log_num_mtt = min(hermon_log_num_mtt, devlim->log_max_mtt); 300 cp->cp_log_num_dmpt = min(hermon_log_num_dmpt, devlim->log_max_dmpt); 301 cp->cp_log_num_cmpt = HERMON_LOG_CMPT_PER_TYPE + 2; /* times 4, */ 302 /* per PRM */ 303 cp->cp_log_max_mrw_sz = min(hermon_log_max_mrw_sz, 304 devlim->log_max_mrw_sz); 305 cp->cp_log_num_pd = min(hermon_log_num_pd, devlim->log_max_pd); 306 cp->cp_log_num_qp = min(hermon_log_num_qp, devlim->log_max_qp); 307 cp->cp_log_num_cq = min(hermon_log_num_cq, devlim->log_max_cq); 308 cp->cp_log_num_srq = min(hermon_log_num_srq, devlim->log_max_srq); 309 cp->cp_log_num_eq = min(hermon_log_num_eq, devlim->log_max_eq); 310 cp->cp_log_eq_sz = min(hermon_log_eq_sz, devlim->log_max_eq_sz); 311 cp->cp_log_num_rdb = cp->cp_log_num_qp + 312 min(hermon_log_num_rdb_per_qp, devlim->log_max_ra_req_qp); 313 cp->cp_hca_max_rdma_in_qp = cp->cp_hca_max_rdma_out_qp = 314 1 << min(hermon_log_num_rdb_per_qp, devlim->log_max_ra_req_qp); 315 cp->cp_num_qp_per_mcg = max(hermon_num_qp_per_mcg, 316 HERMON_NUM_QP_PER_MCG_MIN); 317 cp->cp_num_qp_per_mcg = min(cp->cp_num_qp_per_mcg, 318 (1 << devlim->log_max_qp_mcg) - 8); 319 cp->cp_num_qp_per_mcg = (1 << highbit(cp->cp_num_qp_per_mcg + 7)) - 8; 320 cp->cp_log_num_mcg = min(hermon_log_num_mcg, devlim->log_max_mcg); 321 cp->cp_log_num_mcg_hash = hermon_log_num_mcg_hash; 322 323 /* until srq_resize is debugged, disable it */ 324 cp->cp_srq_resize_enabled = 0; 325 326 /* cp->cp_log_num_uar = hermon_log_num_uar; */ 327 /* 328 * now, we HAVE to calculate the number of UAR pages, so that we can 329 * get the blueflame stuff correct as well 330 */ 331 332 size = devlim->log_max_uar_sz; 333 /* 1MB (2^^20) times size (2^^size) / sparc_pg (2^^13) */ 334 num = (20 + size) - 13; /* XXX - consider using PAGESHIFT */ 335 if (devlim->blu_flm) 336 num -= 1; /* if blueflame, only half the size for UARs */ 337 cp->cp_log_num_uar = min(hermon_log_num_uar, num); 338 339 340 /* while we're at it, calculate the index of the kernel uar page */ 341 /* either the reserved uar's or 128, whichever is smaller */ 342 state->hs_kernel_uar_index = (devlim->num_rsvd_uar > 128) ? 343 devlim->num_rsvd_uar : 128; 344 345 cp->cp_log_max_pkeytbl = port->log_max_pkey; 346 347 cp->cp_log_max_qp_sz = devlim->log_max_qp_sz; 348 cp->cp_log_max_cq_sz = devlim->log_max_cq_sz; 349 cp->cp_log_max_srq_sz = devlim->log_max_srq_sz; 350 cp->cp_log_max_gidtbl = port->log_max_gid; 351 cp->cp_max_mtu = port->ib_mtu; /* XXX now from query_port */ 352 cp->cp_max_port_width = port->ib_port_wid; /* now from query_port */ 353 cp->cp_max_vlcap = port->max_vl; 354 cp->cp_log_num_ah = hermon_log_num_ah; 355 356 /* Paranoia, ensure no arrays indexed by port_num are out of bounds */ 357 cp->cp_num_ports = devlim->num_ports; 358 if (cp->cp_num_ports > HERMON_MAX_PORTS) { 359 cmn_err(CE_CONT, "device has more ports (%d) than are " 360 "supported; Using %d ports\n", 361 cp->cp_num_ports, HERMON_MAX_PORTS); 362 cp->cp_num_ports = HERMON_MAX_PORTS; 363 }; 364 365 /* allocate variable sized arrays */ 366 for (i = 0; i < HERMON_MAX_PORTS; i++) { 367 state->hs_pkey[i] = kmem_zalloc((1 << cp->cp_log_max_pkeytbl) * 368 sizeof (ib_pkey_t), KM_SLEEP); 369 state->hs_guid[i] = kmem_zalloc((1 << cp->cp_log_max_gidtbl) * 370 sizeof (ib_guid_t), KM_SLEEP); 371 } 372 373 /* Determine WQE sizes from requested max SGLs */ 374 hermon_cfg_wqe_sizes(state, cp); 375 376 /* Set whether to use MSIs or not */ 377 cp->cp_use_msi_if_avail = hermon_use_msi_if_avail; 378 379 #if !defined(_ELF64) 380 /* 381 * Need to reduce the hermon kernel virtual memory footprint 382 * on 32-bit kernels. 383 */ 384 cp->cp_log_num_mtt -= 6; 385 cp->cp_log_num_dmpt -= 6; 386 cp->cp_log_num_pd -= 6; 387 cp->cp_log_num_qp -= 6; 388 cp->cp_log_num_cq -= 6; 389 cp->cp_log_num_srq -= 6; 390 cp->cp_log_num_rdb = cp->cp_log_num_qp + 391 min(hermon_log_num_rdb_per_qp, devlim->log_max_ra_req_qp); 392 cp->cp_hca_max_rdma_in_qp = cp->cp_hca_max_rdma_out_qp = 393 1 << min(hermon_log_num_rdb_per_qp, devlim->log_max_ra_req_qp); 394 #endif 395 396 return (DDI_SUCCESS); 397 } 398 399 400 /* 401 * hermon_cfg_profile_fini() 402 * Context: Only called from attach() and/or detach() path contexts 403 */ 404 void 405 hermon_cfg_profile_fini(hermon_state_t *state) 406 { 407 /* 408 * Free up the space for configuration profile 409 */ 410 kmem_free(state->hs_cfg_profile, sizeof (hermon_cfg_profile_t)); 411 } 412 413 414 /* 415 * hermon_cfg_wqe_sizes() 416 * Context: Only called from attach() path context 417 */ 418 static void 419 hermon_cfg_wqe_sizes(hermon_state_t *state, hermon_cfg_profile_t *cp) 420 { 421 uint_t max_size, log2; 422 uint_t max_sgl, real_max_sgl; 423 424 /* 425 * Get the requested maximum number SGL per WQE from the Hermon 426 * patchable variable 427 */ 428 max_sgl = hermon_wqe_max_sgl; 429 430 /* 431 * Use requested maximum number of SGL to calculate the max descriptor 432 * size (while guaranteeing that the descriptor size is a power-of-2 433 * cachelines). We have to use the calculation for QP1 MLX transport 434 * because the possibility that we might need to inline a GRH, along 435 * with all the other headers and alignment restrictions, sets the 436 * maximum for the number of SGLs that we can advertise support for. 437 */ 438 max_size = (HERMON_QP_WQE_MLX_QP1_HDRS + (max_sgl << 4)); 439 log2 = highbit(max_size); 440 if ((max_size & (max_size - 1)) == 0) { 441 log2 = log2 - 1; 442 } 443 max_size = (1 << log2); 444 445 max_size = min(max_size, state->hs_devlim.max_desc_sz_sq); 446 447 /* 448 * Then use the calculated max descriptor size to determine the "real" 449 * maximum SGL (the number beyond which we would roll over to the next 450 * power-of-2). 451 */ 452 real_max_sgl = (max_size - HERMON_QP_WQE_MLX_QP1_HDRS) >> 4; 453 454 /* Then save away this configuration information */ 455 cp->cp_wqe_max_sgl = max_sgl; 456 cp->cp_wqe_real_max_sgl = real_max_sgl; 457 458 /* SRQ SGL gets set to it's own patchable variable value */ 459 cp->cp_srq_max_sgl = hermon_srq_max_sgl; 460 } 461 462 #ifdef __sparc 463 /* 464 * hermon_check_iommu_bypass() 465 * Context: Only called from attach() path context 466 * XXX This is a DMA allocation routine outside the normal 467 * path. FMA hardening will not like this. 468 */ 469 static void 470 hermon_check_iommu_bypass(hermon_state_t *state, hermon_cfg_profile_t *cp) 471 { 472 ddi_dma_handle_t dmahdl; 473 ddi_dma_attr_t dma_attr; 474 int status; 475 ddi_acc_handle_t acc_hdl; 476 caddr_t kaddr; 477 size_t actual_len; 478 ddi_dma_cookie_t cookie; 479 uint_t cookiecnt; 480 481 hermon_dma_attr_init(state, &dma_attr); 482 483 /* Try mapping for IOMMU bypass (Force Physical) */ 484 dma_attr.dma_attr_flags = DDI_DMA_FORCE_PHYSICAL | 485 DDI_DMA_RELAXED_ORDERING; 486 487 /* 488 * Call ddi_dma_alloc_handle(). If this returns DDI_DMA_BADATTR then 489 * it is not possible to use IOMMU bypass with our PCI bridge parent. 490 * Since the function we are in can only be called if iommu bypass was 491 * requested in the config profile, we configure for bypass if the 492 * ddi_dma_alloc_handle() was successful. Otherwise, we configure 493 * for non-bypass (ie: normal) mapping. 494 */ 495 status = ddi_dma_alloc_handle(state->hs_dip, &dma_attr, 496 DDI_DMA_SLEEP, NULL, &dmahdl); 497 if (status == DDI_DMA_BADATTR) { 498 cp->cp_iommu_bypass = HERMON_BINDMEM_NORMAL; 499 return; 500 } else if (status != DDI_SUCCESS) { /* failed somehow */ 501 hermon_kernel_data_ro = HERMON_RO_DISABLED; 502 hermon_user_data_ro = HERMON_RO_DISABLED; 503 cp->cp_iommu_bypass = HERMON_BINDMEM_BYPASS; 504 return; 505 } else { 506 cp->cp_iommu_bypass = HERMON_BINDMEM_BYPASS; 507 } 508 509 status = ddi_dma_mem_alloc(dmahdl, 256, 510 &state->hs_reg_accattr, DDI_DMA_CONSISTENT, 511 DDI_DMA_SLEEP, NULL, (caddr_t *)&kaddr, &actual_len, &acc_hdl); 512 513 if (status != DDI_SUCCESS) { /* failed somehow */ 514 hermon_kernel_data_ro = HERMON_RO_DISABLED; 515 hermon_user_data_ro = HERMON_RO_DISABLED; 516 ddi_dma_free_handle(&dmahdl); 517 return; 518 } 519 520 status = ddi_dma_addr_bind_handle(dmahdl, NULL, kaddr, actual_len, 521 DDI_DMA_RDWR, DDI_DMA_SLEEP, NULL, &cookie, &cookiecnt); 522 523 if (status == DDI_DMA_MAPPED) { 524 (void) ddi_dma_unbind_handle(dmahdl); 525 } else { 526 hermon_kernel_data_ro = HERMON_RO_DISABLED; 527 hermon_user_data_ro = HERMON_RO_DISABLED; 528 } 529 530 ddi_dma_mem_free(&acc_hdl); 531 ddi_dma_free_handle(&dmahdl); 532 } 533 #endif