5255 uts shouldn't open-code ISP2
1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/sysmacros.h> 26 #include <sys/types.h> 27 #include <sys/mkdev.h> 28 #include <sys/stat.h> 29 #include <sys/sunddi.h> 30 #include <vm/seg_kmem.h> 31 #include <sys/machparam.h> 32 #include <sys/sunndi.h> 33 #include <sys/ontrap.h> 34 #include <sys/psm.h> 35 #include <sys/pcie.h> 36 #include <sys/pci_cfgspace.h> 37 #include <sys/pci_tools.h> 38 #include <io/pci/pci_tools_ext.h> 39 #include <sys/apic.h> 40 #include <sys/apix.h> 41 #include <io/pci/pci_var.h> 42 #include <sys/pci_impl.h> 43 #include <sys/promif.h> 44 #include <sys/x86_archext.h> 45 #include <sys/cpuvar.h> 46 #include <sys/pci_cfgacc.h> 47 48 #ifdef __xpv 49 #include <sys/hypervisor.h> 50 #endif 51 52 #define PCIEX_BDF_OFFSET_DELTA 4 53 #define PCIEX_REG_FUNC_SHIFT (PCI_REG_FUNC_SHIFT + PCIEX_BDF_OFFSET_DELTA) 54 #define PCIEX_REG_DEV_SHIFT (PCI_REG_DEV_SHIFT + PCIEX_BDF_OFFSET_DELTA) 55 #define PCIEX_REG_BUS_SHIFT (PCI_REG_BUS_SHIFT + PCIEX_BDF_OFFSET_DELTA) 56 57 #define SUCCESS 0 58 59 extern uint64_t mcfg_mem_base; 60 int pcitool_debug = 0; 61 62 /* 63 * Offsets of BARS in config space. First entry of 0 means config space. 64 * Entries here correlate to pcitool_bars_t enumerated type. 65 */ 66 static uint8_t pci_bars[] = { 67 0x0, 68 PCI_CONF_BASE0, 69 PCI_CONF_BASE1, 70 PCI_CONF_BASE2, 71 PCI_CONF_BASE3, 72 PCI_CONF_BASE4, 73 PCI_CONF_BASE5, 74 PCI_CONF_ROM 75 }; 76 77 /* Max offset allowed into config space for a particular device. */ 78 static uint64_t max_cfg_size = PCI_CONF_HDR_SIZE; 79 80 static uint64_t pcitool_swap_endian(uint64_t data, int size); 81 static int pcitool_cfg_access(pcitool_reg_t *prg, boolean_t write_flag, 82 boolean_t io_access); 83 static int pcitool_io_access(pcitool_reg_t *prg, boolean_t write_flag); 84 static int pcitool_mem_access(pcitool_reg_t *prg, uint64_t virt_addr, 85 boolean_t write_flag); 86 static uint64_t pcitool_map(uint64_t phys_addr, size_t size, size_t *num_pages); 87 static void pcitool_unmap(uint64_t virt_addr, size_t num_pages); 88 89 /* Extern declarations */ 90 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, 91 psm_intr_op_t, int *); 92 93 int 94 pcitool_init(dev_info_t *dip, boolean_t is_pciex) 95 { 96 int instance = ddi_get_instance(dip); 97 98 /* Create pcitool nodes for register access and interrupt routing. */ 99 100 if (ddi_create_minor_node(dip, PCI_MINOR_REG, S_IFCHR, 101 PCI_MINOR_NUM(instance, PCI_TOOL_REG_MINOR_NUM), 102 DDI_NT_REGACC, 0) != DDI_SUCCESS) { 103 return (DDI_FAILURE); 104 } 105 106 if (ddi_create_minor_node(dip, PCI_MINOR_INTR, S_IFCHR, 107 PCI_MINOR_NUM(instance, PCI_TOOL_INTR_MINOR_NUM), 108 DDI_NT_INTRCTL, 0) != DDI_SUCCESS) { 109 ddi_remove_minor_node(dip, PCI_MINOR_REG); 110 return (DDI_FAILURE); 111 } 112 113 if (is_pciex) 114 max_cfg_size = PCIE_CONF_HDR_SIZE; 115 116 return (DDI_SUCCESS); 117 } 118 119 void 120 pcitool_uninit(dev_info_t *dip) 121 { 122 ddi_remove_minor_node(dip, PCI_MINOR_INTR); 123 ddi_remove_minor_node(dip, PCI_MINOR_REG); 124 } 125 126 /*ARGSUSED*/ 127 static int 128 pcitool_set_intr(dev_info_t *dip, void *arg, int mode) 129 { 130 ddi_intr_handle_impl_t info_hdl; 131 pcitool_intr_set_t iset; 132 uint32_t old_cpu; 133 int ret, result; 134 size_t copyinout_size; 135 int rval = SUCCESS; 136 apic_get_type_t type_info; 137 138 /* Version 1 of pcitool_intr_set_t doesn't have flags. */ 139 copyinout_size = (size_t)&iset.flags - (size_t)&iset; 140 141 if (ddi_copyin(arg, &iset, copyinout_size, mode) != DDI_SUCCESS) 142 return (EFAULT); 143 144 switch (iset.user_version) { 145 case PCITOOL_V1: 146 break; 147 148 case PCITOOL_V2: 149 copyinout_size = sizeof (pcitool_intr_set_t); 150 if (ddi_copyin(arg, &iset, copyinout_size, mode) != DDI_SUCCESS) 151 return (EFAULT); 152 break; 153 154 default: 155 iset.status = PCITOOL_OUT_OF_RANGE; 156 rval = ENOTSUP; 157 goto done_set_intr; 158 } 159 160 if (iset.flags & PCITOOL_INTR_FLAG_SET_MSI) { 161 rval = ENOTSUP; 162 iset.status = PCITOOL_IO_ERROR; 163 goto done_set_intr; 164 } 165 166 info_hdl.ih_private = &type_info; 167 168 if ((*psm_intr_ops)(NULL, &info_hdl, 169 PSM_INTR_OP_APIC_TYPE, NULL) != PSM_SUCCESS) { 170 rval = ENOTSUP; 171 iset.status = PCITOOL_IO_ERROR; 172 goto done_set_intr; 173 } 174 175 if (strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) { 176 if (iset.old_cpu > type_info.avgi_num_cpu) { 177 rval = EINVAL; 178 iset.status = PCITOOL_INVALID_CPUID; 179 goto done_set_intr; 180 } 181 old_cpu = iset.old_cpu; 182 } else { 183 if ((old_cpu = 184 pci_get_cpu_from_vecirq(iset.ino, IS_VEC)) == -1) { 185 iset.status = PCITOOL_IO_ERROR; 186 rval = EINVAL; 187 goto done_set_intr; 188 } 189 } 190 191 if (iset.ino > type_info.avgi_num_intr) { 192 rval = EINVAL; 193 iset.status = PCITOOL_INVALID_INO; 194 goto done_set_intr; 195 } 196 197 iset.status = PCITOOL_SUCCESS; 198 199 old_cpu &= ~PSMGI_CPU_USER_BOUND; 200 201 /* 202 * For this locally-declared and used handle, ih_private will contain a 203 * CPU value, not an ihdl_plat_t as used for global interrupt handling. 204 */ 205 if (strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) { 206 info_hdl.ih_vector = APIX_VIRTVECTOR(old_cpu, iset.ino); 207 } else { 208 info_hdl.ih_vector = iset.ino; 209 } 210 info_hdl.ih_private = (void *)(uintptr_t)iset.cpu_id; 211 info_hdl.ih_flags = PSMGI_INTRBY_VEC; 212 if (pcitool_debug) 213 prom_printf("user version:%d, flags:0x%x\n", 214 iset.user_version, iset.flags); 215 216 result = ENOTSUP; 217 if ((iset.user_version >= PCITOOL_V2) && 218 (iset.flags & PCITOOL_INTR_FLAG_SET_GROUP)) { 219 ret = (*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_GRP_SET_CPU, 220 &result); 221 } else { 222 ret = (*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_SET_CPU, 223 &result); 224 } 225 226 if (ret != PSM_SUCCESS) { 227 switch (result) { 228 case EIO: /* Error making the change */ 229 rval = EIO; 230 iset.status = PCITOOL_IO_ERROR; 231 break; 232 case ENXIO: /* Couldn't convert vector to irq */ 233 rval = EINVAL; 234 iset.status = PCITOOL_INVALID_INO; 235 break; 236 case EINVAL: /* CPU out of range */ 237 rval = EINVAL; 238 iset.status = PCITOOL_INVALID_CPUID; 239 break; 240 case ENOTSUP: /* Requested PSM intr ops missing */ 241 rval = ENOTSUP; 242 iset.status = PCITOOL_IO_ERROR; 243 break; 244 } 245 } 246 247 /* Return original CPU. */ 248 iset.cpu_id = old_cpu; 249 250 /* Return new vector */ 251 if (strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) { 252 iset.ino = APIX_VIRTVEC_VECTOR(info_hdl.ih_vector); 253 } 254 255 done_set_intr: 256 iset.drvr_version = PCITOOL_VERSION; 257 if (ddi_copyout(&iset, arg, copyinout_size, mode) != DDI_SUCCESS) 258 rval = EFAULT; 259 return (rval); 260 } 261 262 263 /* It is assumed that dip != NULL */ 264 static void 265 pcitool_get_intr_dev_info(dev_info_t *dip, pcitool_intr_dev_t *devs) 266 { 267 (void) strncpy(devs->driver_name, 268 ddi_driver_name(dip), MAXMODCONFNAME-2); 269 devs->driver_name[MAXMODCONFNAME-1] = '\0'; 270 (void) ddi_pathname(dip, devs->path); 271 devs->dev_inst = ddi_get_instance(dip); 272 } 273 274 static int 275 pcitool_get_intr(dev_info_t *dip, void *arg, int mode) 276 { 277 /* Array part isn't used here, but oh well... */ 278 pcitool_intr_get_t partial_iget; 279 pcitool_intr_get_t *iget = &partial_iget; 280 size_t iget_kmem_alloc_size = 0; 281 uint8_t num_devs_ret; 282 int copyout_rval; 283 int rval = SUCCESS; 284 int circ; 285 int i; 286 287 ddi_intr_handle_impl_t info_hdl; 288 apic_get_intr_t intr_info; 289 apic_get_type_t type_info; 290 291 /* Read in just the header part, no array section. */ 292 if (ddi_copyin(arg, &partial_iget, PCITOOL_IGET_SIZE(0), mode) != 293 DDI_SUCCESS) 294 return (EFAULT); 295 296 if (partial_iget.flags & PCITOOL_INTR_FLAG_GET_MSI) { 297 partial_iget.status = PCITOOL_IO_ERROR; 298 partial_iget.num_devs_ret = 0; 299 rval = ENOTSUP; 300 goto done_get_intr; 301 } 302 303 info_hdl.ih_private = &type_info; 304 305 if ((*psm_intr_ops)(NULL, &info_hdl, 306 PSM_INTR_OP_APIC_TYPE, NULL) != PSM_SUCCESS) { 307 iget->status = PCITOOL_IO_ERROR; 308 iget->num_devs_ret = 0; 309 rval = EINVAL; 310 goto done_get_intr; 311 } 312 313 if (strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) { 314 if (partial_iget.cpu_id > type_info.avgi_num_cpu) { 315 partial_iget.status = PCITOOL_INVALID_CPUID; 316 partial_iget.num_devs_ret = 0; 317 rval = EINVAL; 318 goto done_get_intr; 319 } 320 } 321 322 /* Validate argument. */ 323 if ((partial_iget.ino & APIX_VIRTVEC_VECMASK) > 324 type_info.avgi_num_intr) { 325 partial_iget.status = PCITOOL_INVALID_INO; 326 partial_iget.num_devs_ret = 0; 327 rval = EINVAL; 328 goto done_get_intr; 329 } 330 331 num_devs_ret = partial_iget.num_devs_ret; 332 intr_info.avgi_dip_list = NULL; 333 intr_info.avgi_req_flags = 334 PSMGI_REQ_CPUID | PSMGI_REQ_NUM_DEVS | PSMGI_INTRBY_VEC; 335 /* 336 * For this locally-declared and used handle, ih_private will contain a 337 * pointer to apic_get_intr_t, not an ihdl_plat_t as used for 338 * global interrupt handling. 339 */ 340 info_hdl.ih_private = &intr_info; 341 342 if (strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) { 343 info_hdl.ih_vector = 344 APIX_VIRTVECTOR(partial_iget.cpu_id, partial_iget.ino); 345 } else { 346 info_hdl.ih_vector = partial_iget.ino; 347 } 348 349 /* Caller wants device information returned. */ 350 if (num_devs_ret > 0) { 351 352 intr_info.avgi_req_flags |= PSMGI_REQ_GET_DEVS; 353 354 /* 355 * Allocate room. 356 * If num_devs_ret == 0 iget remains pointing to partial_iget. 357 */ 358 iget_kmem_alloc_size = PCITOOL_IGET_SIZE(num_devs_ret); 359 iget = kmem_alloc(iget_kmem_alloc_size, KM_SLEEP); 360 361 /* Read in whole structure to verify there's room. */ 362 if (ddi_copyin(arg, iget, iget_kmem_alloc_size, mode) != 363 SUCCESS) { 364 365 /* Be consistent and just return EFAULT here. */ 366 kmem_free(iget, iget_kmem_alloc_size); 367 368 return (EFAULT); 369 } 370 } 371 372 bzero(iget, PCITOOL_IGET_SIZE(num_devs_ret)); 373 iget->ino = info_hdl.ih_vector; 374 375 /* 376 * Lock device tree branch from the pci root nexus on down if info will 377 * be extracted from dips returned from the tree. 378 */ 379 if (intr_info.avgi_req_flags & PSMGI_REQ_GET_DEVS) { 380 ndi_devi_enter(dip, &circ); 381 } 382 383 /* Call psm_intr_ops(PSM_INTR_OP_GET_INTR) to get information. */ 384 if ((rval = (*psm_intr_ops)(NULL, &info_hdl, 385 PSM_INTR_OP_GET_INTR, NULL)) != PSM_SUCCESS) { 386 iget->status = PCITOOL_IO_ERROR; 387 iget->num_devs_ret = 0; 388 rval = EINVAL; 389 goto done_get_intr; 390 } 391 392 /* 393 * Fill in the pcitool_intr_get_t to be returned, 394 * with the CPU, num_devs_ret and num_devs. 395 */ 396 if (intr_info.avgi_cpu_id == IRQ_UNBOUND || 397 intr_info.avgi_cpu_id == IRQ_UNINIT) 398 iget->cpu_id = 0; 399 else 400 iget->cpu_id = intr_info.avgi_cpu_id & ~PSMGI_CPU_USER_BOUND; 401 402 /* Number of devices returned by apic. */ 403 iget->num_devs = intr_info.avgi_num_devs; 404 405 /* Device info was returned. */ 406 if (intr_info.avgi_req_flags & PSMGI_REQ_GET_DEVS) { 407 408 /* 409 * num devs returned is num devs ret by apic, 410 * space permitting. 411 */ 412 iget->num_devs_ret = min(num_devs_ret, intr_info.avgi_num_devs); 413 414 /* 415 * Loop thru list of dips and extract driver, name and instance. 416 * Fill in the pcitool_intr_dev_t's with this info. 417 */ 418 for (i = 0; i < iget->num_devs_ret; i++) 419 pcitool_get_intr_dev_info(intr_info.avgi_dip_list[i], 420 &iget->dev[i]); 421 422 /* Free kmem_alloc'ed memory of the apic_get_intr_t */ 423 kmem_free(intr_info.avgi_dip_list, 424 intr_info.avgi_num_devs * sizeof (dev_info_t *)); 425 } 426 427 done_get_intr: 428 429 if (intr_info.avgi_req_flags & PSMGI_REQ_GET_DEVS) { 430 ndi_devi_exit(dip, circ); 431 } 432 433 iget->drvr_version = PCITOOL_VERSION; 434 copyout_rval = ddi_copyout(iget, arg, 435 PCITOOL_IGET_SIZE(num_devs_ret), mode); 436 437 if (iget_kmem_alloc_size > 0) 438 kmem_free(iget, iget_kmem_alloc_size); 439 440 if (copyout_rval != DDI_SUCCESS) 441 rval = EFAULT; 442 443 return (rval); 444 } 445 446 /*ARGSUSED*/ 447 static int 448 pcitool_intr_info(dev_info_t *dip, void *arg, int mode) 449 { 450 pcitool_intr_info_t intr_info; 451 ddi_intr_handle_impl_t info_hdl; 452 int rval = SUCCESS; 453 apic_get_type_t type_info; 454 455 /* If we need user_version, and to ret same user version as passed in */ 456 if (ddi_copyin(arg, &intr_info, sizeof (pcitool_intr_info_t), mode) != 457 DDI_SUCCESS) { 458 if (pcitool_debug) 459 prom_printf("Error reading arguments\n"); 460 return (EFAULT); 461 } 462 463 if (intr_info.flags & PCITOOL_INTR_FLAG_GET_MSI) 464 return (ENOTSUP); 465 466 info_hdl.ih_private = &type_info; 467 468 /* For UPPC systems, psm_intr_ops has no entry for APIC_TYPE. */ 469 if ((rval = (*psm_intr_ops)(NULL, &info_hdl, 470 PSM_INTR_OP_APIC_TYPE, NULL)) != PSM_SUCCESS) { 471 intr_info.ctlr_type = PCITOOL_CTLR_TYPE_UPPC; 472 intr_info.ctlr_version = 0; 473 intr_info.num_intr = APIC_MAX_VECTOR; 474 } else { 475 intr_info.ctlr_version = (uint32_t)info_hdl.ih_ver; 476 intr_info.num_cpu = type_info.avgi_num_cpu; 477 if (strcmp(type_info.avgi_type, 478 APIC_PCPLUSMP_NAME) == 0) { 479 intr_info.ctlr_type = PCITOOL_CTLR_TYPE_PCPLUSMP; 480 intr_info.num_intr = type_info.avgi_num_intr; 481 } else if (strcmp(type_info.avgi_type, 482 APIC_APIX_NAME) == 0) { 483 intr_info.ctlr_type = PCITOOL_CTLR_TYPE_APIX; 484 intr_info.num_intr = type_info.avgi_num_intr; 485 } else { 486 intr_info.ctlr_type = PCITOOL_CTLR_TYPE_UNKNOWN; 487 intr_info.num_intr = APIC_MAX_VECTOR; 488 } 489 } 490 491 intr_info.drvr_version = PCITOOL_VERSION; 492 if (ddi_copyout(&intr_info, arg, sizeof (pcitool_intr_info_t), mode) != 493 DDI_SUCCESS) { 494 if (pcitool_debug) 495 prom_printf("Error returning arguments.\n"); 496 rval = EFAULT; 497 } 498 499 return (rval); 500 } 501 502 503 504 /* 505 * Main function for handling interrupt CPU binding requests and queries. 506 * Need to implement later 507 */ 508 int 509 pcitool_intr_admn(dev_info_t *dip, void *arg, int cmd, int mode) 510 { 511 int rval; 512 513 switch (cmd) { 514 515 /* Associate a new CPU with a given vector */ 516 case PCITOOL_DEVICE_SET_INTR: 517 rval = pcitool_set_intr(dip, arg, mode); 518 break; 519 520 case PCITOOL_DEVICE_GET_INTR: 521 rval = pcitool_get_intr(dip, arg, mode); 522 break; 523 524 case PCITOOL_SYSTEM_INTR_INFO: 525 rval = pcitool_intr_info(dip, arg, mode); 526 break; 527 528 default: 529 rval = ENOTSUP; 530 } 531 532 return (rval); 533 } 534 535 /* 536 * Perform register accesses on the nexus device itself. 537 * No explicit PCI nexus device for X86, so not applicable. 538 */ 539 540 /*ARGSUSED*/ 541 int 542 pcitool_bus_reg_ops(dev_info_t *dip, void *arg, int cmd, int mode) 543 { 544 return (ENOTSUP); 545 } 546 547 /* Swap endianness. */ 548 static uint64_t 549 pcitool_swap_endian(uint64_t data, int size) 550 { 551 typedef union { 552 uint64_t data64; 553 uint8_t data8[8]; 554 } data_split_t; 555 556 data_split_t orig_data; 557 data_split_t returned_data; 558 int i; 559 560 orig_data.data64 = data; 561 returned_data.data64 = 0; 562 563 for (i = 0; i < size; i++) { 564 returned_data.data8[i] = orig_data.data8[size - 1 - i]; 565 } 566 567 return (returned_data.data64); 568 } 569 570 /* 571 * A note about ontrap handling: 572 * 573 * X86 systems on which this module was tested return FFs instead of bus errors 574 * when accessing devices with invalid addresses. Ontrap handling, which 575 * gracefully handles kernel bus errors, is installed anyway for I/O and mem 576 * space accessing (not for pci config space), in case future X86 platforms 577 * require it. 578 */ 579 580 /* Access device. prg is modified. */ 581 static int 582 pcitool_cfg_access(pcitool_reg_t *prg, boolean_t write_flag, 583 boolean_t io_access) 584 { 585 int size = PCITOOL_ACC_ATTR_SIZE(prg->acc_attr); 586 boolean_t big_endian = PCITOOL_ACC_IS_BIG_ENDIAN(prg->acc_attr); 587 int rval = SUCCESS; 588 uint64_t local_data; 589 pci_cfgacc_req_t req; 590 uint32_t max_offset; 591 592 if ((size <= 0) || (size > 8) || !ISP2(size)) { 593 prg->status = PCITOOL_INVALID_SIZE; 594 return (ENOTSUP); 595 } 596 597 /* 598 * NOTE: there is no way to verify whether or not the address is 599 * valid other than that it is within the maximum offset. The 600 * put functions return void and the get functions return -1 on error. 601 */ 602 603 if (io_access) 604 max_offset = 0xFF; 605 else 606 max_offset = 0xFFF; 607 if (prg->offset + size - 1 > max_offset) { 608 prg->status = PCITOOL_INVALID_ADDRESS; 609 return (ENOTSUP); 610 } 611 612 prg->status = PCITOOL_SUCCESS; 613 614 req.rcdip = NULL; 615 req.bdf = PCI_GETBDF(prg->bus_no, prg->dev_no, prg->func_no); 616 req.offset = prg->offset; 617 req.size = size; 618 req.write = write_flag; 619 req.ioacc = io_access; 620 if (write_flag) { 621 if (big_endian) { 622 local_data = pcitool_swap_endian(prg->data, size); 623 } else { 624 local_data = prg->data; 625 } 626 VAL64(&req) = local_data; 627 pci_cfgacc_acc(&req); 628 } else { 629 pci_cfgacc_acc(&req); 630 switch (size) { 631 case 1: 632 local_data = VAL8(&req); 633 break; 634 case 2: 635 local_data = VAL16(&req); 636 break; 637 case 4: 638 local_data = VAL32(&req); 639 break; 640 case 8: 641 local_data = VAL64(&req); 642 break; 643 } 644 if (big_endian) { 645 prg->data = 646 pcitool_swap_endian(local_data, size); 647 } else { 648 prg->data = local_data; 649 } 650 } 651 /* 652 * Check if legacy IO config access is used, in which case 653 * only first 256 bytes are valid. 654 */ 655 if (req.ioacc && (prg->offset + size - 1 > 0xFF)) { 656 prg->status = PCITOOL_INVALID_ADDRESS; 657 return (ENOTSUP); 658 } 659 660 /* Set phys_addr only if MMIO is used */ 661 prg->phys_addr = 0; 662 if (!req.ioacc && mcfg_mem_base != 0) { 663 prg->phys_addr = mcfg_mem_base + prg->offset + 664 ((prg->bus_no << PCIEX_REG_BUS_SHIFT) | 665 (prg->dev_no << PCIEX_REG_DEV_SHIFT) | 666 (prg->func_no << PCIEX_REG_FUNC_SHIFT)); 667 } 668 669 return (rval); 670 } 671 672 static int 673 pcitool_io_access(pcitool_reg_t *prg, boolean_t write_flag) 674 { 675 int port = (int)prg->phys_addr; 676 size_t size = PCITOOL_ACC_ATTR_SIZE(prg->acc_attr); 677 boolean_t big_endian = PCITOOL_ACC_IS_BIG_ENDIAN(prg->acc_attr); 678 int rval = SUCCESS; 679 on_trap_data_t otd; 680 uint64_t local_data; 681 682 683 /* 684 * on_trap works like setjmp. 685 * 686 * A non-zero return here means on_trap has returned from an error. 687 * 688 * A zero return here means that on_trap has just returned from setup. 689 */ 690 if (on_trap(&otd, OT_DATA_ACCESS)) { 691 no_trap(); 692 if (pcitool_debug) 693 prom_printf( 694 "pcitool_io_access: on_trap caught an error...\n"); 695 prg->status = PCITOOL_INVALID_ADDRESS; 696 return (EFAULT); 697 } 698 699 if (write_flag) { 700 701 if (big_endian) { 702 local_data = pcitool_swap_endian(prg->data, size); 703 } else { 704 local_data = prg->data; 705 } 706 707 if (pcitool_debug) 708 prom_printf("Writing %ld byte(s) to port 0x%x\n", 709 size, port); 710 711 switch (size) { 712 case 1: 713 outb(port, (uint8_t)local_data); 714 break; 715 case 2: 716 outw(port, (uint16_t)local_data); 717 break; 718 case 4: 719 outl(port, (uint32_t)local_data); 720 break; 721 default: 722 rval = ENOTSUP; 723 prg->status = PCITOOL_INVALID_SIZE; 724 break; 725 } 726 } else { 727 if (pcitool_debug) 728 prom_printf("Reading %ld byte(s) from port 0x%x\n", 729 size, port); 730 731 switch (size) { 732 case 1: 733 local_data = inb(port); 734 break; 735 case 2: 736 local_data = inw(port); 737 break; 738 case 4: 739 local_data = inl(port); 740 break; 741 default: 742 rval = ENOTSUP; 743 prg->status = PCITOOL_INVALID_SIZE; 744 break; 745 } 746 747 if (rval == SUCCESS) { 748 if (big_endian) { 749 prg->data = 750 pcitool_swap_endian(local_data, size); 751 } else { 752 prg->data = local_data; 753 } 754 } 755 } 756 757 no_trap(); 758 return (rval); 759 } 760 761 static int 762 pcitool_mem_access(pcitool_reg_t *prg, uint64_t virt_addr, boolean_t write_flag) 763 { 764 size_t size = PCITOOL_ACC_ATTR_SIZE(prg->acc_attr); 765 boolean_t big_endian = PCITOOL_ACC_IS_BIG_ENDIAN(prg->acc_attr); 766 int rval = DDI_SUCCESS; 767 on_trap_data_t otd; 768 uint64_t local_data; 769 770 /* 771 * on_trap works like setjmp. 772 * 773 * A non-zero return here means on_trap has returned from an error. 774 * 775 * A zero return here means that on_trap has just returned from setup. 776 */ 777 if (on_trap(&otd, OT_DATA_ACCESS)) { 778 no_trap(); 779 if (pcitool_debug) 780 prom_printf( 781 "pcitool_mem_access: on_trap caught an error...\n"); 782 prg->status = PCITOOL_INVALID_ADDRESS; 783 return (EFAULT); 784 } 785 786 if (write_flag) { 787 788 if (big_endian) { 789 local_data = pcitool_swap_endian(prg->data, size); 790 } else { 791 local_data = prg->data; 792 } 793 794 switch (size) { 795 case 1: 796 *((uint8_t *)(uintptr_t)virt_addr) = local_data; 797 break; 798 case 2: 799 *((uint16_t *)(uintptr_t)virt_addr) = local_data; 800 break; 801 case 4: 802 *((uint32_t *)(uintptr_t)virt_addr) = local_data; 803 break; 804 case 8: 805 *((uint64_t *)(uintptr_t)virt_addr) = local_data; 806 break; 807 default: 808 rval = ENOTSUP; 809 prg->status = PCITOOL_INVALID_SIZE; 810 break; 811 } 812 } else { 813 switch (size) { 814 case 1: 815 local_data = *((uint8_t *)(uintptr_t)virt_addr); 816 break; 817 case 2: 818 local_data = *((uint16_t *)(uintptr_t)virt_addr); 819 break; 820 case 4: 821 local_data = *((uint32_t *)(uintptr_t)virt_addr); 822 break; 823 case 8: 824 local_data = *((uint64_t *)(uintptr_t)virt_addr); 825 break; 826 default: 827 rval = ENOTSUP; 828 prg->status = PCITOOL_INVALID_SIZE; 829 break; 830 } 831 832 if (rval == SUCCESS) { 833 if (big_endian) { 834 prg->data = 835 pcitool_swap_endian(local_data, size); 836 } else { 837 prg->data = local_data; 838 } 839 } 840 } 841 842 no_trap(); 843 return (rval); 844 } 845 846 /* 847 * Map up to 2 pages which contain the address we want to access. 848 * 849 * Mapping should span no more than 8 bytes. With X86 it is possible for an 850 * 8 byte value to start on a 4 byte boundary, so it can cross a page boundary. 851 * We'll never have to map more than two pages. 852 */ 853 854 static uint64_t 855 pcitool_map(uint64_t phys_addr, size_t size, size_t *num_pages) 856 { 857 858 uint64_t page_base = phys_addr & ~MMU_PAGEOFFSET; 859 uint64_t offset = phys_addr & MMU_PAGEOFFSET; 860 void *virt_base; 861 uint64_t returned_addr; 862 pfn_t pfn; 863 864 if (pcitool_debug) 865 prom_printf("pcitool_map: Called with PA:0x%p\n", 866 (void *)(uintptr_t)phys_addr); 867 868 *num_pages = 1; 869 870 /* Desired mapping would span more than two pages. */ 871 if ((offset + size) > (MMU_PAGESIZE * 2)) { 872 if (pcitool_debug) 873 prom_printf("boundary violation: " 874 "offset:0x%" PRIx64 ", size:%ld, pagesize:0x%lx\n", 875 offset, (uintptr_t)size, (uintptr_t)MMU_PAGESIZE); 876 return (NULL); 877 878 } else if ((offset + size) > MMU_PAGESIZE) { 879 (*num_pages)++; 880 } 881 882 /* Get page(s) of virtual space. */ 883 virt_base = vmem_alloc(heap_arena, ptob(*num_pages), VM_NOSLEEP); 884 if (virt_base == NULL) { 885 if (pcitool_debug) 886 prom_printf("Couldn't get virtual base address.\n"); 887 return (NULL); 888 } 889 890 if (pcitool_debug) 891 prom_printf("Got base virtual address:0x%p\n", virt_base); 892 893 #ifdef __xpv 894 /* 895 * We should only get here if we are dom0. 896 * We're using a real device so we need to translate the MA to a PFN. 897 */ 898 ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); 899 pfn = xen_assign_pfn(mmu_btop(page_base)); 900 #else 901 pfn = btop(page_base); 902 #endif 903 904 /* Now map the allocated virtual space to the physical address. */ 905 hat_devload(kas.a_hat, virt_base, mmu_ptob(*num_pages), pfn, 906 PROT_READ | PROT_WRITE | HAT_STRICTORDER, 907 HAT_LOAD_LOCK); 908 909 returned_addr = ((uintptr_t)(virt_base)) + offset; 910 911 if (pcitool_debug) 912 prom_printf("pcitool_map: returning VA:0x%p\n", 913 (void *)(uintptr_t)returned_addr); 914 915 return (returned_addr); 916 } 917 918 /* Unmap the mapped page(s). */ 919 static void 920 pcitool_unmap(uint64_t virt_addr, size_t num_pages) 921 { 922 void *base_virt_addr = (void *)(uintptr_t)(virt_addr & ~MMU_PAGEOFFSET); 923 924 hat_unload(kas.a_hat, base_virt_addr, ptob(num_pages), 925 HAT_UNLOAD_UNLOCK); 926 vmem_free(heap_arena, base_virt_addr, ptob(num_pages)); 927 } 928 929 930 /* Perform register accesses on PCI leaf devices. */ 931 /*ARGSUSED*/ 932 int 933 pcitool_dev_reg_ops(dev_info_t *dip, void *arg, int cmd, int mode) 934 { 935 boolean_t write_flag = B_FALSE; 936 boolean_t io_access = B_TRUE; 937 int rval = 0; 938 pcitool_reg_t prg; 939 uint8_t size; 940 941 uint64_t base_addr; 942 uint64_t virt_addr; 943 size_t num_virt_pages; 944 945 switch (cmd) { 946 case (PCITOOL_DEVICE_SET_REG): 947 write_flag = B_TRUE; 948 949 /*FALLTHRU*/ 950 case (PCITOOL_DEVICE_GET_REG): 951 if (pcitool_debug) 952 prom_printf("pci_dev_reg_ops set/get reg\n"); 953 if (ddi_copyin(arg, &prg, sizeof (pcitool_reg_t), mode) != 954 DDI_SUCCESS) { 955 if (pcitool_debug) 956 prom_printf("Error reading arguments\n"); 957 return (EFAULT); 958 } 959 960 if (prg.barnum >= (sizeof (pci_bars) / sizeof (pci_bars[0]))) { 961 prg.status = PCITOOL_OUT_OF_RANGE; 962 rval = EINVAL; 963 goto done_reg; 964 } 965 966 if (pcitool_debug) 967 prom_printf("raw bus:0x%x, dev:0x%x, func:0x%x\n", 968 prg.bus_no, prg.dev_no, prg.func_no); 969 /* Validate address arguments of bus / dev / func */ 970 if (((prg.bus_no & 971 (PCI_REG_BUS_M >> PCI_REG_BUS_SHIFT)) != 972 prg.bus_no) || 973 ((prg.dev_no & 974 (PCI_REG_DEV_M >> PCI_REG_DEV_SHIFT)) != 975 prg.dev_no) || 976 ((prg.func_no & 977 (PCI_REG_FUNC_M >> PCI_REG_FUNC_SHIFT)) != 978 prg.func_no)) { 979 prg.status = PCITOOL_INVALID_ADDRESS; 980 rval = EINVAL; 981 goto done_reg; 982 } 983 984 size = PCITOOL_ACC_ATTR_SIZE(prg.acc_attr); 985 986 /* Proper config space desired. */ 987 if (prg.barnum == 0) { 988 989 if (pcitool_debug) 990 prom_printf( 991 "config access: offset:0x%" PRIx64 ", " 992 "phys_addr:0x%" PRIx64 "\n", 993 prg.offset, prg.phys_addr); 994 995 if (prg.offset >= max_cfg_size) { 996 prg.status = PCITOOL_OUT_OF_RANGE; 997 rval = EINVAL; 998 goto done_reg; 999 } 1000 if (max_cfg_size == PCIE_CONF_HDR_SIZE) 1001 io_access = B_FALSE; 1002 1003 rval = pcitool_cfg_access(&prg, write_flag, io_access); 1004 if (pcitool_debug) 1005 prom_printf( 1006 "config access: data:0x%" PRIx64 "\n", 1007 prg.data); 1008 1009 /* IO/ MEM/ MEM64 space. */ 1010 } else { 1011 1012 pcitool_reg_t prg2; 1013 bcopy(&prg, &prg2, sizeof (pcitool_reg_t)); 1014 1015 /* 1016 * Translate BAR number into offset of the BAR in 1017 * the device's config space. 1018 */ 1019 prg2.offset = pci_bars[prg2.barnum]; 1020 prg2.acc_attr = 1021 PCITOOL_ACC_ATTR_SIZE_4 | PCITOOL_ACC_ATTR_ENDN_LTL; 1022 1023 if (pcitool_debug) 1024 prom_printf( 1025 "barnum:%d, bar_offset:0x%" PRIx64 "\n", 1026 prg2.barnum, prg2.offset); 1027 /* 1028 * Get Bus Address Register (BAR) from config space. 1029 * prg2.offset is the offset into config space of the 1030 * BAR desired. prg.status is modified on error. 1031 */ 1032 rval = pcitool_cfg_access(&prg2, B_FALSE, B_TRUE); 1033 if (rval != SUCCESS) { 1034 if (pcitool_debug) 1035 prom_printf("BAR access failed\n"); 1036 prg.status = prg2.status; 1037 goto done_reg; 1038 } 1039 /* 1040 * Reference proper PCI space based on the BAR. 1041 * If 64 bit MEM space, need to load other half of the 1042 * BAR first. 1043 */ 1044 1045 if (pcitool_debug) 1046 prom_printf("bar returned is 0x%" PRIx64 "\n", 1047 prg2.data); 1048 if (!prg2.data) { 1049 if (pcitool_debug) 1050 prom_printf("BAR data == 0\n"); 1051 rval = EINVAL; 1052 prg.status = PCITOOL_INVALID_ADDRESS; 1053 goto done_reg; 1054 } 1055 if (prg2.data == 0xffffffff) { 1056 if (pcitool_debug) 1057 prom_printf("BAR data == -1\n"); 1058 rval = EINVAL; 1059 prg.status = PCITOOL_INVALID_ADDRESS; 1060 goto done_reg; 1061 } 1062 1063 /* 1064 * BAR has bits saying this space is IO space, unless 1065 * this is the ROM address register. 1066 */ 1067 if (((PCI_BASE_SPACE_M & prg2.data) == 1068 PCI_BASE_SPACE_IO) && 1069 (prg2.offset != PCI_CONF_ROM)) { 1070 if (pcitool_debug) 1071 prom_printf("IO space\n"); 1072 1073 prg2.data &= PCI_BASE_IO_ADDR_M; 1074 prg.phys_addr = prg2.data + prg.offset; 1075 1076 rval = pcitool_io_access(&prg, write_flag); 1077 if ((rval != SUCCESS) && (pcitool_debug)) 1078 prom_printf("IO access failed\n"); 1079 1080 goto done_reg; 1081 1082 1083 /* 1084 * BAR has bits saying this space is 64 bit memory 1085 * space, unless this is the ROM address register. 1086 * 1087 * The 64 bit address stored in two BAR cells is not 1088 * necessarily aligned on an 8-byte boundary. 1089 * Need to keep the first 4 bytes read, 1090 * and do a separate read of the high 4 bytes. 1091 */ 1092 1093 } else if ((PCI_BASE_TYPE_ALL & prg2.data) && 1094 (prg2.offset != PCI_CONF_ROM)) { 1095 1096 uint32_t low_bytes = 1097 (uint32_t)(prg2.data & ~PCI_BASE_TYPE_ALL); 1098 1099 /* 1100 * Don't try to read the next 4 bytes 1101 * past the end of BARs. 1102 */ 1103 if (prg2.offset >= PCI_CONF_BASE5) { 1104 prg.status = PCITOOL_OUT_OF_RANGE; 1105 rval = EIO; 1106 goto done_reg; 1107 } 1108 1109 /* 1110 * Access device. 1111 * prg2.status is modified on error. 1112 */ 1113 prg2.offset += 4; 1114 rval = pcitool_cfg_access(&prg2, 1115 B_FALSE, B_TRUE); 1116 if (rval != SUCCESS) { 1117 prg.status = prg2.status; 1118 goto done_reg; 1119 } 1120 1121 if (prg2.data == 0xffffffff) { 1122 prg.status = PCITOOL_INVALID_ADDRESS; 1123 prg.status = EFAULT; 1124 goto done_reg; 1125 } 1126 1127 prg2.data = (prg2.data << 32) + low_bytes; 1128 if (pcitool_debug) 1129 prom_printf( 1130 "64 bit mem space. " 1131 "64-bit bar is 0x%" PRIx64 "\n", 1132 prg2.data); 1133 1134 /* Mem32 space, including ROM */ 1135 } else { 1136 1137 if (prg2.offset == PCI_CONF_ROM) { 1138 if (pcitool_debug) 1139 prom_printf( 1140 "Additional ROM " 1141 "checking\n"); 1142 /* Can't write to ROM */ 1143 if (write_flag) { 1144 prg.status = PCITOOL_ROM_WRITE; 1145 rval = EIO; 1146 goto done_reg; 1147 1148 /* ROM disabled for reading */ 1149 } else if (!(prg2.data & 0x00000001)) { 1150 prg.status = 1151 PCITOOL_ROM_DISABLED; 1152 rval = EIO; 1153 goto done_reg; 1154 } 1155 } 1156 1157 if (pcitool_debug) 1158 prom_printf("32 bit mem space\n"); 1159 } 1160 1161 /* Common code for all IO/MEM range spaces. */ 1162 1163 base_addr = prg2.data; 1164 if (pcitool_debug) 1165 prom_printf( 1166 "addr portion of bar is 0x%" PRIx64 ", " 1167 "base=0x%" PRIx64 ", " 1168 "offset:0x%" PRIx64 "\n", 1169 prg2.data, base_addr, prg.offset); 1170 /* 1171 * Use offset provided by caller to index into 1172 * desired space, then access. 1173 * Note that prg.status is modified on error. 1174 */ 1175 prg.phys_addr = base_addr + prg.offset; 1176 1177 virt_addr = pcitool_map(prg.phys_addr, size, 1178 &num_virt_pages); 1179 if (virt_addr == NULL) { 1180 prg.status = PCITOOL_IO_ERROR; 1181 rval = EIO; 1182 goto done_reg; 1183 } 1184 1185 rval = pcitool_mem_access(&prg, virt_addr, write_flag); 1186 pcitool_unmap(virt_addr, num_virt_pages); 1187 } 1188 done_reg: 1189 prg.drvr_version = PCITOOL_VERSION; 1190 if (ddi_copyout(&prg, arg, sizeof (pcitool_reg_t), mode) != 1191 DDI_SUCCESS) { 1192 if (pcitool_debug) 1193 prom_printf("Error returning arguments.\n"); 1194 rval = EFAULT; 1195 } 1196 break; 1197 default: 1198 rval = ENOTTY; 1199 break; 1200 } 1201 return (rval); 1202 } --- EOF ---