1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Implementation of ri_init routine for obtaining mapping
  28  * of system board attachment points to physical devices and to
  29  * the Reconfiguration Coordination Manager (RCM) client usage
  30  * of these devices.
  31  */
  32 #include <string.h>
  33 #include <stdlib.h>
  34 #include <unistd.h>
  35 #include <kstat.h>
  36 #include <sys/param.h>
  37 #include <sys/sbd_ioctl.h>
  38 #include "rsrc_info_impl.h"
  39 
  40 /*
  41  * Occupant types exported by cfgadm sbd plugin via
  42  * config_admin(3CFGADM).
  43  */
  44 #define SBD_CM_CPU      "cpu"
  45 #define SBD_CM_MEM      "memory"
  46 #define SBD_CM_IO       "io"
  47 
  48 /*
  49  * RCM abstract resource names.
  50  */
  51 #define RCM_MEM_ALL     "SUNW_memory"
  52 #define RCM_CPU_ALL     "SUNW_cpu"
  53 #define RCM_CPU         RCM_CPU_ALL"/cpu"
  54 
  55 #define KBYTE           1024
  56 #define MBYTE           1048576
  57 #define USAGE_ALLOC_SIZE        128
  58 
  59 /*
  60  * define to allow io_cm_info to return NODE is NULL to ri_init,
  61  * in order to skip over nodes w/unattached drivers
  62  */
  63 #define RI_NODE_NIL     1
  64 
  65 /*
  66  * This code is CMP aware as it parses the
  67  * cfgadm info field for individual cpuids.
  68  */
  69 #define CPUID_SEP       ","
  70 #define CPU_INFO_FMT    "cpuid=%s speed=%d ecache=%d"
  71 
  72 typedef struct {
  73         cfga_list_data_t *cfga_list_data;
  74         int             nlist;
  75 } apd_t;
  76 
  77 typedef struct {
  78         long            pagesize;
  79         long            syspages;
  80         long            sysmb;
  81 } mem_stat_t;
  82 
  83 #define ms_syspages     m_stat.syspages
  84 #define ms_pagesize     m_stat.pagesize
  85 #define ms_sysmb        m_stat.sysmb
  86 
  87 typedef int32_t         cpuid_t;
  88 
  89 typedef struct {
  90         int     cpuid_max;      /* maximum cpuid value */
  91         int     ecache_curr;    /* cached during tree walk */
  92         int     *ecache_sizes;  /* indexed by cpuid */
  93 } ecache_info_t;
  94 
  95 typedef struct {
  96         rcm_handle_t    *hdl;
  97         rcm_info_t      *offline_query_info;
  98         char            **rlist;
  99         int             nrlist;
 100         cpuid_t         *cpus;
 101         int             ncpus;
 102         int             ndevs;
 103         uint_t          query_pages;
 104         mem_stat_t      m_stat;
 105         ecache_info_t   ecache_info;
 106 } rcmd_t;
 107 
 108 typedef struct {
 109         const char      *rsrc;
 110         const char      *info;
 111 } usage_t;
 112 
 113 /* Lookup table entry for matching IO devices to RCM resource usage */
 114 typedef struct {
 115         int             index;          /* index into the table array */
 116         di_node_t       node;           /* associated devinfo node */
 117         char            *name;          /* device full path name */
 118         int             n_usage;
 119         usage_t         *usage;
 120 } lookup_entry_t;
 121 
 122 typedef struct {
 123         int             n_entries;
 124         int             n_slots;
 125         lookup_entry_t  *table;
 126 } lookup_table_t;
 127 
 128 typedef struct {
 129         int                     err;
 130         di_node_t               node;
 131         char                    *pathbuf;
 132         lookup_table_t          *table;
 133         di_devlink_handle_t     linkhd;
 134 } devinfo_arg_t;
 135 
 136 static int dyn_ap_ids(char *, cfga_list_data_t **, int *);
 137 static int rcm_init(rcmd_t *, apd_t [], int, int);
 138 static void rcm_fini(rcmd_t *);
 139 static int rcm_query_init(rcmd_t *, apd_t [], int);
 140 static int cap_request(ri_hdl_t *, rcmd_t *);
 141 static int syscpus(cpuid_t **, int *);
 142 static int cpu_cap_request(ri_hdl_t *, rcmd_t *);
 143 static int mem_cap_request(ri_hdl_t *, rcmd_t *);
 144 static int (*cm_rcm_qpass_func(cfga_type_t))(cfga_list_data_t *, rcmd_t *);
 145 static int cpu_rcm_qpass(cfga_list_data_t *, rcmd_t *);
 146 static int mem_rcm_qpass(cfga_list_data_t *, rcmd_t *);
 147 static int io_rcm_qpass(cfga_list_data_t *, rcmd_t *);
 148 static int (*cm_info_func(cfga_type_t))(ri_ap_t *, cfga_list_data_t *, int,
 149     rcmd_t *);
 150 static int cpu_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
 151 static int i_cpu_cm_info(processorid_t, int, int, ri_ap_t *, rcmd_t *);
 152 static int mem_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
 153 static int io_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
 154 static int ident_leaf(di_node_t);
 155 static int mk_drv_inst(di_node_t, char [], char *);
 156 static int devinfo_node_walk(di_node_t, void *);
 157 static int devinfo_minor_walk(di_node_t, di_minor_t, void *);
 158 static int devinfo_devlink_walk(di_devlink_t, void *);
 159 static int add_rcm_clients(ri_client_t **, rcmd_t *, rcm_info_t *, int, int *);
 160 static int rcm_ignore(char *, char *);
 161 static int add_query_state(rcmd_t *, ri_client_t *, const char *, const char *);
 162 static int state2query(int);
 163 static void dev_list_append(ri_dev_t **, ri_dev_t *);
 164 static void dev_list_cpu_insert(ri_dev_t **, ri_dev_t *, processorid_t);
 165 static rcm_info_tuple_t *tuple_lookup(rcmd_t *, const char *, const char *);
 166 static ri_ap_t *ri_ap_alloc(char *, ri_hdl_t *);
 167 static ri_dev_t *ri_dev_alloc(void);
 168 static ri_dev_t *io_dev_alloc(char *);
 169 static ri_client_t *ri_client_alloc(char *, char *);
 170 static void apd_tbl_free(apd_t [], int);
 171 static char *pstate2str(int);
 172 static int ecache_info_init(ecache_info_t *);
 173 static int find_cpu_nodes(di_node_t, void *);
 174 static int prop_lookup_int(di_node_t, di_prom_handle_t, char *, int **);
 175 static int add_lookup_entry(lookup_table_t *, const char *, di_node_t);
 176 static int table_compare_names(const void *, const void *);
 177 static int table_compare_indices(const void *, const void *);
 178 static lookup_entry_t *lookup(lookup_table_t *table, const char *);
 179 static int add_usage(lookup_entry_t *, const char *, rcm_info_tuple_t *);
 180 static void empty_table(lookup_table_t *);
 181 
 182 #ifdef DEBUG
 183 static void             dump_apd_tbl(FILE *, apd_t *, int);
 184 #endif /* DEBUG */
 185 
 186 static struct {
 187         char    *type;
 188         int     (*cm_info)(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
 189         int     (*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
 190 } cm_ctl[] = {
 191         {SBD_CM_CPU,    cpu_cm_info,    cpu_rcm_qpass},
 192         {SBD_CM_MEM,    mem_cm_info,    mem_rcm_qpass},
 193         {SBD_CM_IO,     io_cm_info,     io_rcm_qpass}
 194 };
 195 
 196 /*
 197  * Table of known info string prefixes for RCM modules that do not
 198  * represent actual resource usage, but instead provide name translations
 199  * or sequencing within the RCM namespace. Since RCM provides no way to
 200  * filter these out, we must maintain this hack.
 201  */
 202 static char *rcm_info_filter[] = {
 203         "Network interface",            /* Network naming module */
 204         NULL
 205 };
 206 
 207 
 208 /*
 209  * Allocate snapshot handle.
 210  */
 211 int
 212 ri_init(int n_apids, char **ap_ids, int flags, ri_hdl_t **hdlp)
 213 {
 214         int                     i, j;
 215         ri_hdl_t                *ri_hdl;
 216         ri_ap_t                 *ap_hdl;
 217         rcmd_t                  *rcm = NULL;
 218         cfga_list_data_t        *cfga_ldata;
 219         apd_t                   *apd, *apd_tbl = NULL;
 220         int                     (*cm_info)(ri_ap_t *, cfga_list_data_t *,
 221                                     int, rcmd_t *);
 222         int                     rv = RI_SUCCESS;
 223         int                     cm_info_rv;
 224 
 225         if (n_apids <= 0 || ap_ids == NULL || hdlp == NULL)
 226                 return (RI_INVAL);
 227 
 228         if (flags & ~RI_REQ_MASK)
 229                 return (RI_NOTSUP);
 230 
 231         *hdlp = NULL;
 232         if ((ri_hdl = calloc(1, sizeof (*ri_hdl))) == NULL ||
 233             (rcm = calloc(1, sizeof (*rcm))) == NULL ||
 234             (apd_tbl = calloc(n_apids, sizeof (*apd_tbl))) == NULL) {
 235                 dprintf((stderr, "calloc: %s\n", strerror(errno)));
 236                 rv = RI_FAILURE;
 237                 goto out;
 238         }
 239 
 240         /*
 241          * Create mapping of boards to components.
 242          */
 243         for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
 244                 if (dyn_ap_ids(ap_ids[i], &apd->cfga_list_data,
 245                     &apd->nlist) == -1) {
 246                         rv = RI_INVAL;
 247                         goto out;
 248                 }
 249         }
 250 #ifdef DEBUG
 251         dump_apd_tbl(stderr, apd_tbl, n_apids);
 252 #endif /* DEBUG */
 253 
 254         if (rcm_init(rcm, apd_tbl, n_apids, flags) != 0) {
 255                 rv = RI_FAILURE;
 256                 goto out;
 257         }
 258 
 259         /*
 260          * Best effort attempt to read cpu ecache sizes from
 261          * OBP/Solaris device trees. These are later looked up
 262          * in i_cpu_cm_info().
 263          */
 264         (void) ecache_info_init(&rcm->ecache_info);
 265 
 266         for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
 267                 if ((ap_hdl = ri_ap_alloc(ap_ids[i], ri_hdl)) == NULL) {
 268                         rv = RI_FAILURE;
 269                         goto out;
 270                 }
 271 
 272                 /*
 273                  * Add component info based on occupant type. Note all
 274                  * passes through the apd table skip over the first
 275                  * cfgadm_list_data entry, which is the static system board
 276                  * attachment point.
 277                  */
 278                 for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
 279                     j < apd->nlist; j++, cfga_ldata++) {
 280                         if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
 281                                 continue;
 282                         }
 283 
 284                         if ((cm_info =
 285                             cm_info_func(cfga_ldata->ap_type)) != NULL) {
 286                                 cm_info_rv =
 287                                     (*cm_info)(ap_hdl, cfga_ldata, flags, rcm);
 288                                 if (cm_info_rv != 0) {
 289                                         /*
 290                                          * If we cannot obtain info for the ap,
 291                                          * skip it and do not fail the entire
 292                                          * operation.  This case occurs when the
 293                                          * driver for a device is not attached:
 294                                          * di_init() returns failed back to
 295                                          * io_cm_info().
 296                                          */
 297                                         if (cm_info_rv == RI_NODE_NIL)
 298                                                 continue;
 299                                         else {
 300                                                 rv = RI_FAILURE;
 301                                                 goto out;
 302                                         }
 303                                 }
 304                         }
 305                 }
 306         }
 307 
 308         if ((flags & RI_INCLUDE_QUERY) && cap_request(ri_hdl, rcm) != 0)
 309                 rv = RI_FAILURE;
 310 
 311 out:
 312         if (apd_tbl != NULL)
 313                 apd_tbl_free(apd_tbl, n_apids);
 314         if (rcm != NULL)
 315                 rcm_fini(rcm);
 316 
 317         if (rv == RI_SUCCESS)
 318                 *hdlp = ri_hdl;
 319         else
 320                 ri_fini(ri_hdl);
 321 
 322         return (rv);
 323 }
 324 
 325 /*
 326  * Map static board attachment point to dynamic attachment points (components).
 327  */
 328 static int
 329 dyn_ap_ids(char *ap_id, cfga_list_data_t **ap_id_list, int *nlist)
 330 {
 331         cfga_err_t      cfga_err;
 332         char            *errstr;
 333         char            *opts = "parsable";
 334         char            *listops = "class=sbd";
 335 
 336         cfga_err = config_list_ext(1, &ap_id, ap_id_list, nlist,
 337             opts, listops, &errstr, CFGA_FLAG_LIST_ALL);
 338         if (cfga_err != CFGA_OK) {
 339                 dprintf((stderr, "config_list_ext: %s\n",
 340                     config_strerror(cfga_err)));
 341                 return (-1);
 342         }
 343 
 344         return (0);
 345 }
 346 
 347 /*
 348  * Initialize rcm handle, memory stats. Cache query result if necessary.
 349  */
 350 static int
 351 rcm_init(rcmd_t *rcm, apd_t apd_tbl[], int napds, int flags)
 352 {
 353         longlong_t      ii;
 354         int             rv = 0;
 355 
 356         rcm->offline_query_info = NULL;
 357         rcm->rlist = NULL;
 358         rcm->cpus = NULL;
 359 
 360         if (rcm_alloc_handle(NULL, RCM_NOPID, NULL, &rcm->hdl) != RCM_SUCCESS) {
 361                 dprintf((stderr, "rcm_alloc_handle (errno=%d)\n", errno));
 362                 return (-1);
 363         }
 364 
 365         if ((rcm->ms_pagesize = sysconf(_SC_PAGE_SIZE)) == -1 ||
 366             (rcm->ms_syspages = sysconf(_SC_PHYS_PAGES)) == -1) {
 367                 dprintf((stderr, "sysconf: %s\n", strerror(errno)));
 368                 return (-1);
 369         }
 370         ii = (longlong_t)rcm->ms_pagesize * rcm->ms_syspages;
 371         rcm->ms_sysmb = (int)((ii+MBYTE-1) / MBYTE);
 372 
 373         if (flags & RI_INCLUDE_QUERY)
 374                 rv = rcm_query_init(rcm, apd_tbl, napds);
 375 
 376         return (rv);
 377 }
 378 
 379 static void
 380 rcm_fini(rcmd_t *rcm)
 381 {
 382         char    **cpp;
 383 
 384         assert(rcm != NULL);
 385 
 386         if (rcm->offline_query_info != NULL)
 387                 rcm_free_info(rcm->offline_query_info);
 388         if (rcm->hdl != NULL)
 389                 rcm_free_handle(rcm->hdl);
 390 
 391         if (rcm->rlist != NULL) {
 392                 for (cpp = rcm->rlist; *cpp != NULL; cpp++)
 393                         s_free(*cpp);
 394                 free(rcm->rlist);
 395         }
 396 
 397         s_free(rcm->cpus);
 398         free(rcm);
 399 }
 400 
 401 #define NODENAME_CMP            "cmp"
 402 #define NODENAME_SSM            "ssm"
 403 #define PROP_CPUID              "cpuid"
 404 #define PROP_DEVICE_TYPE        "device-type"
 405 #define PROP_ECACHE_SIZE        "ecache-size"
 406 #define PROP_L2_CACHE_SIZE      "l2-cache-size"
 407 #define PROP_L3_CACHE_SIZE      "l3-cache-size"
 408 
 409 typedef struct {
 410         di_node_t               root;
 411         di_prom_handle_t        ph;
 412         ecache_info_t           *ecache_info;
 413 } di_arg_t;
 414 
 415 /*
 416  * The ecache sizes for individual cpus are read from the
 417  * OBP/Solaris device trees. This info cannot be derived
 418  * from the cfgadm_sbd cpu attachment point ecache info,
 419  * which may be a sum of multiple cores for CMP.
 420  */
 421 static int
 422 ecache_info_init(ecache_info_t *ec)
 423 {
 424         di_arg_t        di_arg;
 425         di_prom_handle_t ph = DI_PROM_HANDLE_NIL;
 426         di_node_t       root = DI_NODE_NIL;
 427         int             cpuid_max, rv = 0;
 428 
 429         assert(ec != NULL && ec->cpuid_max == 0 && ec->ecache_sizes == NULL);
 430 
 431         if ((cpuid_max = sysconf(_SC_CPUID_MAX)) == -1) {
 432                 dprintf((stderr, "sysconf fail: %s\n", strerror(errno)));
 433                 rv = -1;
 434                 goto done;
 435         }
 436 
 437         if ((root = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {
 438                 dprintf((stderr, "di_init fail: %s\n", strerror(errno)));
 439                 rv = -1;
 440                 goto done;
 441         }
 442 
 443         if ((ph = di_prom_init()) == DI_PROM_HANDLE_NIL) {
 444                 dprintf((stderr, "di_prom_init fail: %s\n", strerror(errno)));
 445                 rv = -1;
 446                 goto done;
 447         }
 448 
 449         if ((ec->ecache_sizes = calloc(cpuid_max + 1, sizeof (int))) == NULL) {
 450                 dprintf((stderr, "calloc fail: %s\n", strerror(errno)));
 451                 rv = -1;
 452                 goto done;
 453         }
 454         ec->cpuid_max = cpuid_max;
 455 
 456         dprintf((stderr, "cpuid_max is set to %d\n", ec->cpuid_max));
 457 
 458         di_arg.ph = ph;
 459         di_arg.root = root;
 460         di_arg.ecache_info = ec;
 461 
 462         if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
 463             find_cpu_nodes) != 0) {
 464                 dprintf((stderr, "di_walk_node fail: %s\n", strerror(errno)));
 465                 rv = -1;
 466         }
 467 
 468 done:
 469         if (root != DI_NODE_NIL)
 470                 di_fini(root);
 471         if (ph != DI_PROM_HANDLE_NIL)
 472                 di_prom_fini(ph);
 473 
 474         return (rv);
 475 }
 476 
 477 /*
 478  * Libdevinfo node walk callback for reading ecache size
 479  * properties for cpu device nodes. Subtrees not containing
 480  * cpu nodes are filtered out.
 481  */
 482 static int
 483 find_cpu_nodes(di_node_t node, void *arg)
 484 {
 485         char                    *name;
 486         int                     *cpuid, *ecache;
 487         di_arg_t                *di_arg = (di_arg_t *)arg;
 488         ecache_info_t           *ec = di_arg->ecache_info;
 489         di_prom_handle_t        ph = di_arg->ph;
 490         int                     walk_child = 0;
 491 
 492         if (node == DI_NODE_NIL) {
 493                 return (DI_WALK_TERMINATE);
 494         }
 495 
 496         if (node == di_arg->root) {
 497                 return (DI_WALK_CONTINUE);
 498         }
 499 
 500         if (di_nodeid(node) == DI_PSEUDO_NODEID) {
 501                 return (DI_WALK_PRUNECHILD);
 502         }
 503 
 504         name = di_node_name(node);
 505         if (name != NULL) {
 506                 /*
 507                  * CMP nodes will be the parent of cpu nodes. On some platforms,
 508                  * cpu nodes will be under the ssm node. In either case,
 509                  * continue searching this subtree.
 510                  */
 511                 if (strncmp(name, NODENAME_SSM, strlen(NODENAME_SSM)) == 0 ||
 512                     strncmp(name, NODENAME_CMP, strlen(NODENAME_CMP)) == 0) {
 513                         return (DI_WALK_CONTINUE);
 514                 }
 515         }
 516 
 517         dprintf((stderr, "find_cpu_nodes: node=%p, name=%s, binding_name=%s\n",
 518             node, di_node_name(node), di_binding_name(node)));
 519 
 520         /*
 521          * Ecache size property name differs with processor implementation.
 522          * Panther has both L2 and L3, so check for L3 first to differentiate
 523          * from Jaguar, which has only L2.
 524          */
 525         if (prop_lookup_int(node, ph, PROP_ECACHE_SIZE, &ecache) == 0 ||
 526             prop_lookup_int(node, ph, PROP_L3_CACHE_SIZE, &ecache) == 0 ||
 527             prop_lookup_int(node, ph, PROP_L2_CACHE_SIZE, &ecache) == 0) {
 528                 /*
 529                  * On some platforms the cache property is in the core
 530                  * node while the cpuid is in the child cpu node.  It may
 531                  * be needed while processing this node or a child node.
 532                  */
 533                 ec->ecache_curr = *ecache;
 534                 walk_child = 1;
 535         }
 536 
 537         if (prop_lookup_int(node, ph, PROP_CPUID, &cpuid) == 0) {
 538 
 539                 assert(ec != NULL && ec->ecache_sizes != NULL &&
 540                     *cpuid <= ec->cpuid_max);
 541 
 542                 if (ec->ecache_curr != 0) {
 543                         ec->ecache_sizes[*cpuid] = ec->ecache_curr;
 544 
 545                 }
 546         }
 547 
 548         return (walk_child ? DI_WALK_CONTINUE : DI_WALK_PRUNECHILD);
 549 }
 550 
 551 /*
 552  * Given a di_node_t, call the appropriate int property lookup routine.
 553  * Note: This lookup fails if the int property has multiple value entries.
 554  */
 555 static int
 556 prop_lookup_int(di_node_t node, di_prom_handle_t ph, char *propname, int **ival)
 557 {
 558         int rv;
 559 
 560         rv = (di_nodeid(node) == DI_PROM_NODEID) ?
 561             di_prom_prop_lookup_ints(ph, node, propname, ival) :
 562             di_prop_lookup_ints(DDI_DEV_T_ANY, node, propname, ival);
 563 
 564         return (rv == 1 ? 0 : -1);
 565 }
 566 
 567 /*
 568  * For offline queries, RCM must be given a list of all resources
 569  * so modules can have access to the full scope of the operation.
 570  * The rcm_get_info calls are made individually in order to map the
 571  * returned rcm_info_t's to physical devices. The rcm_request_offline
 572  * result is cached so the query state can be looked up as we process
 573  * the rcm_get_info calls. This routine also tallies up the amount of
 574  * memory going away and creates a list of cpu ids to be used
 575  * later for rcm_request_capacity_change.
 576  */
 577 static int
 578 rcm_query_init(rcmd_t *rcm, apd_t apd_tbl[], int napds)
 579 {
 580         apd_t                   *apd;
 581         int                     i, j;
 582         cfga_list_data_t        *cfga_ldata;
 583         int                     (*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
 584 #ifdef DEBUG
 585         char                    **cpp;
 586 #endif /* DEBUG */
 587 
 588         /*
 589          * Initial pass to size cpu and resource name arrays needed to
 590          * interface with RCM. Attachment point ids for CMP can represent
 591          * multiple cpus (and resource names). Instead of parsing the
 592          * cfgadm info field here, use the worse case that all component
 593          * attachment points are CMP.
 594          */
 595         rcm->ndevs = 0;
 596         for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
 597                 for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
 598                     j < apd->nlist; j++, cfga_ldata++) {
 599                         if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
 600                                 continue;
 601                         }
 602                         rcm->ndevs += SBD_MAX_CORES_PER_CMP;
 603                 }
 604         }
 605 
 606         /* account for trailing NULL in rlist */
 607         if (rcm->ndevs > 0 &&
 608             ((rcm->cpus = calloc(rcm->ndevs, sizeof (cpuid_t))) == NULL ||
 609             (rcm->rlist = calloc(rcm->ndevs + 1, sizeof (char *))) == NULL)) {
 610                 dprintf((stderr, "calloc: %s\n", strerror(errno)));
 611                 return (-1);
 612         }
 613 
 614         /*
 615          * Second pass to fill in the RCM resource and cpu lists.
 616          */
 617         for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
 618                 for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
 619                     j < apd->nlist; j++, cfga_ldata++) {
 620                         if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
 621                                 continue;
 622                         }
 623                         if ((cm_rcm_qpass =
 624                             cm_rcm_qpass_func(cfga_ldata->ap_type)) != NULL &&
 625                             (*cm_rcm_qpass)(cfga_ldata, rcm) != 0) {
 626                                 return (-1);
 627                         }
 628                 }
 629         }
 630 
 631         if (rcm->nrlist == 0)
 632                 return (0);
 633 
 634         /*
 635          * Cache query result. Since we are only interested in the
 636          * set of RCM clients processed and not their request status,
 637          * the return value is irrelevant.
 638          */
 639         (void) rcm_request_offline_list(rcm->hdl, rcm->rlist,
 640             RCM_QUERY|RCM_SCOPE, &rcm->offline_query_info);
 641 
 642 #ifdef DEBUG
 643         dprintf((stderr, "RCM rlist: nrlist=%d\n", rcm->nrlist));
 644         for (cpp = rcm->rlist, i = 0; *cpp != NULL; cpp++, i++) {
 645                 dprintf((stderr, "rlist[%d]=%s\n", i, *cpp));
 646         }
 647 #endif /* DEBUG */
 648 
 649         return (0);
 650 }
 651 
 652 static int
 653 cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
 654 {
 655         return (((rcm->ncpus > 0 && cpu_cap_request(ri_hdl, rcm) != 0) ||
 656             (rcm->query_pages > 0 && mem_cap_request(ri_hdl, rcm) != 0)) ?
 657             -1 : 0);
 658 }
 659 
 660 /*
 661  * RCM capacity change request for cpus.
 662  */
 663 static int
 664 cpu_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
 665 {
 666         cpuid_t         *syscpuids, *newcpuids;
 667         int             sysncpus, newncpus;
 668         rcm_info_t      *rcm_info = NULL;
 669         int             i, j, k;
 670         nvlist_t        *nvl;
 671         int             rv = 0;
 672 
 673         /* get all cpus in the system */
 674         if (syscpus(&syscpuids, &sysncpus) == -1)
 675                 return (-1);
 676 
 677         newncpus = sysncpus - rcm->ncpus;
 678         if ((newcpuids = calloc(newncpus, sizeof (cpuid_t))) == NULL) {
 679                 dprintf((stderr, "calloc: %s", strerror(errno)));
 680                 rv = -1;
 681                 goto out;
 682         }
 683 
 684         if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
 685                 dprintf((stderr, "nvlist_alloc fail\n"));
 686                 rv = -1;
 687                 goto out;
 688         }
 689 
 690         /*
 691          * Construct the new cpu list.
 692          */
 693         for (i = 0, j = 0; i < sysncpus; i++) {
 694                 for (k = 0; k < rcm->ncpus; k++) {
 695                         if (rcm->cpus[k] == syscpuids[i]) {
 696                                 break;
 697                         }
 698                 }
 699                 if (k == rcm->ncpus) {
 700                         newcpuids[j++] = syscpuids[i];
 701                 }
 702         }
 703 
 704         if (nvlist_add_int32(nvl, "old_total", sysncpus) != 0 ||
 705             nvlist_add_int32(nvl, "new_total", newncpus) != 0 ||
 706             nvlist_add_int32_array(nvl, "old_cpu_list", syscpuids,
 707             sysncpus) != 0 ||
 708             nvlist_add_int32_array(nvl, "new_cpu_list", newcpuids,
 709             newncpus) != 0) {
 710                 dprintf((stderr, "nvlist_add fail\n"));
 711                 rv = -1;
 712                 goto out;
 713         }
 714 
 715 #ifdef DEBUG
 716         dprintf((stderr, "old_total=%d\n", sysncpus));
 717         for (i = 0; i < sysncpus; i++) {
 718                 dprintf((stderr, "old_cpu_list[%d]=%d\n", i, syscpuids[i]));
 719         }
 720         dprintf((stderr, "new_total=%d\n", newncpus));
 721         for (i = 0; i < newncpus; i++) {
 722                 dprintf((stderr, "new_cpu_list[%d]=%d\n", i, newcpuids[i]));
 723         }
 724 #endif /* DEBUG */
 725 
 726         (void) rcm_request_capacity_change(rcm->hdl, RCM_CPU_ALL,
 727             RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
 728 
 729         rv = add_rcm_clients(&ri_hdl->cpu_cap_clients, rcm, rcm_info, 0, NULL);
 730 
 731 out:
 732         s_free(syscpuids);
 733         s_free(newcpuids);
 734         if (nvl != NULL)
 735                 nvlist_free(nvl);
 736         if (rcm_info != NULL)
 737                 rcm_free_info(rcm_info);
 738 
 739         return (rv);
 740 }
 741 
 742 static int
 743 syscpus(cpuid_t **cpuids, int *ncpus)
 744 {
 745         kstat_t         *ksp;
 746         kstat_ctl_t     *kc;
 747         cpuid_t         *cp;
 748         int             i;
 749 
 750         if ((*ncpus = sysconf(_SC_NPROCESSORS_CONF)) == -1) {
 751                 dprintf((stderr, "sysconf: %s\n", errno));
 752                 return (-1);
 753         }
 754 
 755         if ((kc = kstat_open()) == NULL) {
 756                 dprintf((stderr, "kstat_open fail\n"));
 757                 return (-1);
 758         }
 759 
 760         if ((cp = calloc(*ncpus, sizeof (cpuid_t))) == NULL) {
 761                 dprintf((stderr, "calloc: %s\n", errno));
 762                 (void) kstat_close(kc);
 763                 return (-1);
 764         }
 765 
 766         for (i = 0, ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {
 767                 if (strcmp(ksp->ks_module, "cpu_info") == 0) {
 768                         cp[i++] = ksp->ks_instance;
 769                 }
 770         }
 771 
 772         (void) kstat_close(kc);
 773         *cpuids = cp;
 774 
 775         return (0);
 776 }
 777 
 778 /*
 779  * RCM capacity change request for memory.
 780  */
 781 static int
 782 mem_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
 783 {
 784         nvlist_t        *nvl;
 785         rcm_info_t      *rcm_info = NULL;
 786         long            newpages;
 787         int             rv = 0;
 788 
 789         if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
 790                 dprintf((stderr, "nvlist_alloc fail\n"));
 791                 return (-1);
 792         }
 793 
 794         newpages = rcm->ms_syspages - rcm->query_pages;
 795         if (nvlist_add_int32(nvl, "page_size", rcm->ms_pagesize) != 0 ||
 796             nvlist_add_int32(nvl, "old_pages", rcm->ms_syspages) != 0 ||
 797             nvlist_add_int32(nvl, "new_pages", newpages) != 0) {
 798                 dprintf((stderr, "nvlist_add fail\n"));
 799                 nvlist_free(nvl);
 800                 return (-1);
 801         }
 802 
 803         dprintf((stderr, "memory capacity change req: "
 804             "page_size=%d, old_pages=%d, new_pages=%d\n",
 805             rcm->ms_pagesize, rcm->ms_syspages, newpages));
 806 
 807         (void) rcm_request_capacity_change(rcm->hdl, RCM_MEM_ALL,
 808             RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
 809 
 810         rv = add_rcm_clients(&ri_hdl->mem_cap_clients, rcm, rcm_info, 0, NULL);
 811 
 812         nvlist_free(nvl);
 813         if (rcm_info != NULL)
 814                 rcm_free_info(rcm_info);
 815 
 816         return (rv);
 817 }
 818 
 819 static int
 820 (*cm_rcm_qpass_func(cfga_type_t ap_type))(cfga_list_data_t *, rcmd_t *)
 821 {
 822         int i;
 823 
 824         for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
 825                 if (strcmp(cm_ctl[i].type, ap_type) == 0) {
 826                         return (cm_ctl[i].cm_rcm_qpass);
 827                 }
 828         }
 829         return (NULL);
 830 }
 831 
 832 /*
 833  * Save cpu ids and RCM abstract resource names.
 834  * Cpu ids will be used for the capacity change request.
 835  * Resource names will be used for the offline query.
 836  */
 837 static int
 838 cpu_rcm_qpass(cfga_list_data_t *cfga_ldata, rcmd_t *rcm)
 839 {
 840         processorid_t   cpuid;
 841         char            *cpustr, *lasts, *rsrcname, rbuf[32];
 842         char            cbuf[CFGA_INFO_LEN];
 843         int             speed, ecache;
 844 
 845         assert(sscanf(cfga_ldata->ap_info, CPU_INFO_FMT, &cbuf, &speed,
 846             &ecache) == 3);
 847 
 848         for (cpustr = (char *)strtok_r(cbuf, CPUID_SEP, &lasts);
 849             cpustr != NULL;
 850             cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
 851                 cpuid = atoi(cpustr);
 852 
 853                 (void) snprintf(rbuf, sizeof (rbuf), "%s%d", RCM_CPU, cpuid);
 854                 if ((rsrcname = strdup(rbuf)) == NULL) {
 855                         dprintf((stderr, "strdup fail\n"));
 856                         return (-1);
 857                 }
 858                 assert(rcm->nrlist < rcm->ndevs && rcm->ncpus < rcm->ndevs);
 859                 rcm->rlist[rcm->nrlist++] = rsrcname;
 860                 rcm->cpus[rcm->ncpus++] = (cpuid_t)cpuid;
 861 
 862                 dprintf((stderr, "cpu_cm_info: cpuid=%d, rsrcname=%s",
 863                     cpuid, rsrcname));
 864         }
 865 
 866         return (0);
 867 }
 868 
 869 /*
 870  * No RCM resource names for individual memory units, so
 871  * just add to offline query page count.
 872  */
 873 static int
 874 mem_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
 875 {
 876         char            *cp;
 877         uint_t          kbytes;
 878         longlong_t      ii;
 879 
 880         if ((cp = strstr(cfga->ap_info, "size")) == NULL ||
 881             sscanf(cp, "size=%u", &kbytes) != 1) {
 882                 dprintf((stderr, "unknown sbd info format: %s\n", cp));
 883                 return (-1);
 884         }
 885 
 886         ii = (longlong_t)kbytes * KBYTE;
 887         rcm->query_pages += (uint_t)(ii / rcm->ms_pagesize);
 888 
 889         dprintf((stderr, "%s: npages=%u\n", cfga->ap_log_id,
 890             (uint_t)(ii / rcm->ms_pagesize)));
 891 
 892         return (0);
 893 }
 894 
 895 /*
 896  * Add physical I/O bus name to RCM resource list.
 897  */
 898 static int
 899 io_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
 900 {
 901         char            path[MAXPATHLEN];
 902         char            buf[MAXPATHLEN];
 903         char            *rsrcname;
 904 
 905         if (sscanf(cfga->ap_info, "device=%s", path) != 1) {
 906                 dprintf((stderr, "unknown sbd info format: %s\n",
 907                     cfga->ap_info));
 908                 return (-1);
 909         }
 910 
 911         (void) snprintf(buf, sizeof (buf), "/devices%s", path);
 912         if ((rsrcname = strdup(buf)) == NULL) {
 913                 dprintf((stderr, "strdup fail\n"));
 914                 return (-1);
 915         }
 916 
 917         assert(rcm->nrlist < rcm->ndevs);
 918         rcm->rlist[rcm->nrlist++] = rsrcname;
 919 
 920         return (0);
 921 }
 922 
 923 static int
 924 (*cm_info_func(cfga_type_t ap_type))(ri_ap_t *, cfga_list_data_t *,
 925     int, rcmd_t *)
 926 {
 927         int i;
 928 
 929         for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
 930                 if (strcmp(cm_ctl[i].type, ap_type) == 0) {
 931                         return (cm_ctl[i].cm_info);
 932                 }
 933         }
 934         return (NULL);
 935 }
 936 
 937 /*
 938  * Create cpu handle, adding properties exported by sbd plugin and
 939  * RCM client usage.
 940  */
 941 /* ARGSUSED */
 942 static int
 943 cpu_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
 944 {
 945         processorid_t   cpuid;
 946         int             speed, ecache, rv = 0;
 947         char            buf[CFGA_INFO_LEN], *cpustr, *lasts;
 948 
 949         if (sscanf(cfga->ap_info, CPU_INFO_FMT, &buf, &speed, &ecache) != 3) {
 950                 dprintf((stderr, "unknown sbd info format: %s\n",
 951                     cfga->ap_info));
 952                 return (-1);
 953         }
 954 
 955         /* parse cpuids */
 956         for (cpustr = (char *)strtok_r(buf, CPUID_SEP, &lasts);
 957             cpustr != NULL;
 958             cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
 959                 cpuid = atoi(cpustr);
 960                 if ((rv = i_cpu_cm_info(cpuid, speed, ecache, ap, rcm)) != 0) {
 961                         break;
 962                 }
 963         }
 964 
 965         return (rv);
 966 }
 967 
 968 static int
 969 i_cpu_cm_info(processorid_t cpuid, int speed, int ecache_cfga, ri_ap_t *ap,
 970     rcmd_t *rcm)
 971 {
 972         int             ecache_mb = 0;
 973         int             ecache_kb = 0;
 974         char            *state, buf[32];
 975         processor_info_t cpu_info;
 976         ri_dev_t        *cpu = NULL;
 977         rcm_info_t      *rcm_info = NULL;
 978 
 979         /*
 980          * Could have been unconfigured in the interim, so cannot
 981          * count on processor_info recognizing it.
 982          */
 983         state = (processor_info(cpuid, &cpu_info) == 0) ?
 984             pstate2str(cpu_info.pi_state) : "unknown";
 985 
 986         if ((cpu = ri_dev_alloc()) == NULL) {
 987                 dprintf((stderr, "ri_dev_alloc failed\n"));
 988                 return (-1);
 989         }
 990 
 991         /*
 992          * Assume the ecache_info table has the right e-cache size for
 993          * this CPU.  Use the value found in cfgadm (ecache_cfga) if not.
 994          */
 995         if (rcm->ecache_info.ecache_sizes != NULL) {
 996                 assert(rcm->ecache_info.cpuid_max != 0 &&
 997                     cpuid <= rcm->ecache_info.cpuid_max);
 998                 ecache_mb = rcm->ecache_info.ecache_sizes[cpuid] / MBYTE;
 999                 ecache_kb = rcm->ecache_info.ecache_sizes[cpuid] / KBYTE;
1000         }
1001 
1002         if (ecache_mb == 0) {
1003                 ecache_mb = ecache_cfga;
1004         }
1005 
1006         dprintf((stderr, "i_cpu_cm_info: cpu(%d) ecache=%d MB\n",
1007             cpuid, ecache));
1008 
1009         if (nvlist_add_int32(cpu->conf_props, RI_CPU_ID, cpuid) != 0 ||
1010             nvlist_add_int32(cpu->conf_props, RI_CPU_SPEED, speed) != 0 ||
1011             nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE, ecache_mb) != 0 ||
1012             nvlist_add_string(cpu->conf_props, RI_CPU_STATE, state) != 0) {
1013                 dprintf((stderr, "nvlist_add fail\n"));
1014                 ri_dev_free(cpu);
1015                 return (-1);
1016         }
1017 
1018         /*
1019          * Report cache size in kilobyte units if available.  This info is
1020          * added to support processors with cache sizes that are non-integer
1021          * megabyte multiples.
1022          */
1023         if (ecache_kb != 0) {
1024                 if (nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE_KBYTE,
1025                     ecache_kb) != 0)  {
1026                         dprintf((stderr, "nvlist_add fail: %s\n",
1027                             RI_CPU_ECACHE_KBYTE));
1028                         ri_dev_free(cpu);
1029                         return (-1);
1030                 }
1031         }
1032 
1033         (void) snprintf(buf, sizeof (buf), "%s%d", RCM_CPU, cpuid);
1034         dprintf((stderr, "rcm_get_info(%s)\n", buf));
1035         if (rcm_get_info(rcm->hdl, buf, RCM_INCLUDE_DEPENDENT,
1036             &rcm_info) != RCM_SUCCESS) {
1037                 dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
1038                 ri_dev_free(cpu);
1039                 if (rcm_info != NULL)
1040                         rcm_free_info(rcm_info);
1041                 return (-1);
1042         }
1043 
1044         dev_list_cpu_insert(&ap->cpus, cpu, cpuid);
1045 
1046         return (0);
1047 }
1048 
1049 /*
1050  * Create memory handle, adding properties exported by sbd plugin.
1051  * No RCM tuples to be saved unless RCM is modified to export names
1052  * for individual memory units.
1053  */
1054 /* ARGSUSED */
1055 static int
1056 mem_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
1057 {
1058         ri_dev_t        *mem;
1059         char            *cp;
1060         char            *cpval;
1061         int             len;
1062         uint64_t        base_addr;                              /* required */
1063         int32_t         size_kb;                                /* required */
1064         int32_t         perm_kb = 0;                            /* optional */
1065         char            target[CFGA_AP_LOG_ID_LEN] = "";        /* optional */
1066         int32_t         del_kb = 0;                             /* optional */
1067         int32_t         rem_kb = 0;                             /* optional */
1068         char            source[CFGA_AP_LOG_ID_LEN] = "";        /* optional */
1069 
1070         if (sscanf(cfga->ap_info, "address=0x%llx size=%u", &base_addr,
1071             &size_kb) != 2) {
1072                 goto err_fmt;
1073         }
1074 
1075         if ((cp = strstr(cfga->ap_info, "permanent")) != NULL &&
1076             sscanf(cp, "permanent=%u", &perm_kb) != 1) {
1077                 goto err_fmt;
1078         }
1079 
1080         if ((cp = strstr(cfga->ap_info, "target")) != NULL) {
1081                 if ((cpval = strstr(cp, "=")) == NULL) {
1082                         goto err_fmt;
1083                 }
1084                 for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
1085                         if (len >= CFGA_AP_LOG_ID_LEN) {
1086                                 goto err_fmt;
1087                         }
1088                 }
1089                 if (sscanf(cp, "target=%s deleted=%u remaining=%u", &target,
1090                     &del_kb, &rem_kb) != 3) {
1091                         goto err_fmt;
1092                 }
1093         }
1094 
1095         if ((cp = strstr(cfga->ap_info, "source")) != NULL) {
1096                 if ((cpval = strstr(cp, "=")) == NULL) {
1097                         goto err_fmt;
1098                 }
1099                 for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
1100                         if (len >= CFGA_AP_LOG_ID_LEN) {
1101                                 goto err_fmt;
1102                         }
1103                 }
1104                 if (sscanf(cp, "source=%s", &source) != 1) {
1105                         goto err_fmt;
1106                 }
1107         }
1108 
1109         dprintf((stderr, "%s: base=0x%llx, size=%u, permanent=%u\n",
1110             cfga->ap_log_id, base_addr, size_kb, perm_kb));
1111 
1112         if ((mem = ri_dev_alloc()) == NULL)
1113                 return (-1);
1114 
1115         /*
1116          * Convert memory sizes to MB (truncate).
1117          */
1118         if (nvlist_add_uint64(mem->conf_props, RI_MEM_ADDR, base_addr) != 0 ||
1119             nvlist_add_int32(mem->conf_props, RI_MEM_BRD, size_kb/KBYTE) != 0 ||
1120             nvlist_add_int32(mem->conf_props, RI_MEM_PERM,
1121             perm_kb/KBYTE) != 0) {
1122                 dprintf((stderr, "nvlist_add failure\n"));
1123                 ri_dev_free(mem);
1124                 return (-1);
1125         }
1126 
1127         if (target[0] != '\0' &&
1128             (nvlist_add_string(mem->conf_props, RI_MEM_TARG, target) != 0 ||
1129             nvlist_add_int32(mem->conf_props, RI_MEM_DEL, del_kb/KBYTE) != 0 ||
1130             nvlist_add_int32(mem->conf_props, RI_MEM_REMAIN,
1131             rem_kb/KBYTE) != 0)) {
1132                 dprintf((stderr, "nvlist_add failure\n"));
1133                 ri_dev_free(mem);
1134                 return (-1);
1135         }
1136 
1137         if (source[0] != '\0' &&
1138             nvlist_add_string(mem->conf_props, RI_MEM_SRC, source) != 0) {
1139                 dprintf((stderr, "nvlist_add failure\n"));
1140                 ri_dev_free(mem);
1141                 return (-1);
1142         }
1143 
1144         /*
1145          * XXX - move this property to attachment point hdl?
1146          */
1147         if (nvlist_add_int32(mem->conf_props, RI_MEM_DOMAIN,
1148             rcm->ms_sysmb) != 0) {
1149                 dprintf((stderr, "nvlist_add failure\n"));
1150                 ri_dev_free(mem);
1151                 return (-1);
1152         }
1153 
1154         dev_list_append(&ap->mems, mem);
1155         return (0);
1156 
1157 err_fmt:
1158         dprintf((stderr, "unknown sbd info format: %s\n", cfga->ap_info));
1159         return (-1);
1160 }
1161 
1162 /*
1163  * Initiate a libdevinfo walk on the IO bus path.
1164  * XXX - investigate performance using two threads here: one thread to do the
1165  * libdevinfo snapshot and treewalk; and one thread to get RCM usage info
1166  */
1167 static int
1168 io_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
1169 {
1170         int                     i;
1171         int                     j;
1172         int                     k;
1173         int                     set_size;
1174         int                     retval = 0;
1175         int                     n_usage;
1176         devinfo_arg_t           di_arg;
1177         lookup_table_t          devicetable;
1178         lookup_entry_t          *deventry;
1179         lookup_entry_t          *lastdeventry;
1180         ri_dev_t                *io = NULL;
1181         ri_client_t             *client;
1182         ri_client_t             *tmp;
1183         di_devlink_handle_t     linkhd = NULL;
1184         di_node_t               root = DI_NODE_NIL;
1185         di_node_t               node = DI_NODE_NIL;
1186         rcm_info_tuple_t        *rcm_tuple;
1187         rcm_info_t              *rcm_info = NULL;
1188         const char              *rcm_rsrc = NULL;
1189         char                    drv_inst[MAXPATHLEN];
1190         char                    path[MAXPATHLEN];
1191         char                    pathbuf[MAXPATHLEN];
1192 
1193         dprintf((stderr, "io_cm_info(%s)\n", cfga->ap_log_id));
1194 
1195         /* Extract devfs path from cfgadm information */
1196         if (sscanf(cfga->ap_info, "device=%s\n", path) != 1) {
1197                 dprintf((stderr, "unknown sbd info format: %s\n",
1198                     cfga->ap_info));
1199                 return (-1);
1200         }
1201 
1202         /* Initialize empty device lookup table */
1203         devicetable.n_entries = 0;
1204         devicetable.n_slots = 0;
1205         devicetable.table = NULL;
1206 
1207         /* Get libdevinfo snapshot */
1208         dprintf((stderr, "di_init(%s)\n", path));
1209         if ((root = di_init(path, DINFOCPYALL)) == DI_NODE_NIL) {
1210                 dprintf((stderr, "di_init: %s\n", strerror(errno)));
1211                 retval = RI_NODE_NIL; /* tell ri_init to skip this node */
1212                 goto end;
1213         }
1214 
1215         /*
1216          * Map in devlinks database.
1217          * XXX - This could be moved to ri_init() for better performance.
1218          */
1219         dprintf((stderr, "di_devlink_init()\n"));
1220         if ((linkhd = di_devlink_init(NULL, 0)) == NULL) {
1221                 dprintf((stderr, "di_devlink_init: %s\n", strerror(errno)));
1222                 retval = -1;
1223                 goto end;
1224         }
1225 
1226         /* Initialize argument for devinfo treewalk */
1227         di_arg.err = 0;
1228         di_arg.node = DI_NODE_NIL;
1229         di_arg.pathbuf = pathbuf;
1230         di_arg.table = &devicetable;
1231         di_arg.linkhd = linkhd;
1232 
1233         /* Use libdevinfo treewalk to build device lookup table */
1234         if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
1235             devinfo_node_walk) != 0) {
1236                 dprintf((stderr, "di_walk_node: %s\n", strerror(errno)));
1237                 retval = -1;
1238                 goto end;
1239         }
1240         if (di_arg.err != 0) {
1241                 dprintf((stderr, "di_walk_node: device tree walk failed\n"));
1242                 retval = -1;
1243                 goto end;
1244         }
1245 
1246         /* Call RCM to gather usage information */
1247         (void) snprintf(pathbuf, MAXPATHLEN, "/devices%s", path);
1248         dprintf((stderr, "rcm_get_info(%s)\n", pathbuf));
1249         if (rcm_get_info(rcm->hdl, pathbuf,
1250             RCM_INCLUDE_SUBTREE|RCM_INCLUDE_DEPENDENT, &rcm_info) !=
1251             RCM_SUCCESS) {
1252                 dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
1253                 retval = -1;
1254                 goto end;
1255         }
1256 
1257         /* Sort the device table by name (proper order for lookups) */
1258         qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
1259             table_compare_names);
1260 
1261         /* Perform mappings of RCM usage segments to device table entries */
1262         lastdeventry = NULL;
1263         rcm_tuple = NULL;
1264         while ((rcm_tuple = rcm_info_next(rcm_info, rcm_tuple)) != NULL) {
1265                 if ((rcm_rsrc = rcm_info_rsrc(rcm_tuple)) == NULL)
1266                         continue;
1267                 if (deventry = lookup(&devicetable, rcm_rsrc)) {
1268                         if (add_usage(deventry, rcm_rsrc, rcm_tuple)) {
1269                                 retval = -1;
1270                                 goto end;
1271                         }
1272                         lastdeventry = deventry;
1273                 } else {
1274                         if (add_usage(lastdeventry, rcm_rsrc, rcm_tuple)) {
1275                                 retval = -1;
1276                                 goto end;
1277                         }
1278                 }
1279         }
1280 
1281         /* Re-sort the device table by index number (original treewalk order) */
1282         qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
1283             table_compare_indices);
1284 
1285         /*
1286          * Use the mapped usage and the device table to construct ri_dev_t's.
1287          * Construct one for each set of entries in the device table with
1288          * matching di_node_t's, if: 1) it has mapped RCM usage, or 2) it is
1289          * a leaf node and the caller has requested that unmanaged nodes be
1290          * included in the output.
1291          */
1292         i = 0;
1293         while (i < devicetable.n_entries) {
1294 
1295                 node = devicetable.table[i].node;
1296 
1297                 /* Count how many usage records are mapped to this node's set */
1298                 n_usage = 0;
1299                 set_size = 0;
1300                 while (((i + set_size) < devicetable.n_entries) &&
1301                     (devicetable.table[i + set_size].node == node)) {
1302                         n_usage += devicetable.table[i + set_size].n_usage;
1303                         set_size += 1;
1304                 }
1305 
1306                 /*
1307                  * If there's no usage, then the node is unmanaged.  Skip this
1308                  * set of devicetable entries unless the node is a leaf node
1309                  * and the caller has requested information on unmanaged leaves.
1310                  */
1311                 if ((n_usage == 0) &&
1312                     !((flags & RI_INCLUDE_UNMANAGED) && (ident_leaf(node)))) {
1313                         i += set_size;
1314                         continue;
1315                 }
1316 
1317                 /*
1318                  * The checks above determined that this node is going in.
1319                  * So determine its driver/instance name and allocate an
1320                  * ri_dev_t for this node.
1321                  */
1322                 if (mk_drv_inst(node, drv_inst, devicetable.table[i].name)) {
1323                         dprintf((stderr, "mk_drv_inst failed\n"));
1324                         retval = -1;
1325                         break;
1326                 }
1327                 if ((io = io_dev_alloc(drv_inst)) == NULL) {
1328                         dprintf((stderr, "io_dev_alloc failed\n"));
1329                         retval = -1;
1330                         break;
1331                 }
1332 
1333                 /* Now add all the RCM usage records (if any) to the ri_dev_t */
1334                 for (j = i; j < (i + set_size); j++) {
1335                         for (k = 0; k < devicetable.table[j].n_usage; k++) {
1336                                 /* Create new ri_client_t for basic usage */
1337                                 client = ri_client_alloc(
1338                                     (char *)devicetable.table[j].usage[k].rsrc,
1339                                     (char *)devicetable.table[j].usage[k].info);
1340                                 if (client == NULL) {
1341                                         dprintf((stderr,
1342                                             "ri_client_alloc failed\n"));
1343                                         ri_dev_free(io);
1344                                         retval = -1;
1345                                         goto end;
1346                                 }
1347 
1348                                 /* Add extra query usage to the ri_client_t */
1349                                 if ((flags & RI_INCLUDE_QUERY) &&
1350                                     (add_query_state(rcm, client,
1351                                     devicetable.table[j].usage[k].rsrc,
1352                                     devicetable.table[j].usage[k].info) != 0)) {
1353                                         dprintf((stderr,
1354                                             "add_query_state failed\n"));
1355                                         ri_dev_free(io);
1356                                         ri_client_free(client);
1357                                         retval = -1;
1358                                         goto end;
1359                                 }
1360 
1361                                 /* Link new ri_client_t to ri_dev_t */
1362                                 if (io->rcm_clients) {
1363                                         tmp = io->rcm_clients;
1364                                         while (tmp->next)
1365                                                 tmp = tmp->next;
1366                                         tmp->next = client;
1367                                 } else {
1368                                         io->rcm_clients = client;
1369                                 }
1370                         }
1371                 }
1372 
1373                 /* Link the ri_dev_t into the return value */
1374                 dev_list_append(&ap->ios, io);
1375 
1376                 /* Advance to the next node set */
1377                 i += set_size;
1378         }
1379 
1380 end:
1381         if (rcm_info != NULL)
1382                 rcm_free_info(rcm_info);
1383         if (linkhd != NULL)
1384                 di_devlink_fini(&linkhd);
1385         if (root != DI_NODE_NIL)
1386                 di_fini(root);
1387         empty_table(&devicetable);
1388 
1389         dprintf((stderr, "io_cm_info: returning %d\n", retval));
1390         return (retval);
1391 }
1392 
1393 static int
1394 ident_leaf(di_node_t node)
1395 {
1396         di_minor_t      minor = DI_MINOR_NIL;
1397 
1398         return ((minor = di_minor_next(node, minor)) != DI_MINOR_NIL &&
1399             di_child_node(node) == DI_NODE_NIL);
1400 }
1401 
1402 /* ARGSUSED */
1403 static int
1404 mk_drv_inst(di_node_t node, char drv_inst[], char *devfs_path)
1405 {
1406         char    *drv;
1407         int     inst;
1408 
1409         if ((drv = di_driver_name(node)) == NULL) {
1410                 dprintf((stderr, "no driver bound to %s\n",
1411                     devfs_path));
1412                 return (-1);
1413         }
1414 
1415         if ((inst = di_instance(node)) == -1) {
1416                 dprintf((stderr, "no instance assigned to %s\n",
1417                     devfs_path));
1418                 return (-1);
1419         }
1420         (void) snprintf(drv_inst, MAXPATHLEN, "%s%d", drv, inst);
1421 
1422         return (0);
1423 }
1424 
1425 /*
1426  * Libdevinfo walker.
1427  *
1428  * During the tree walk of the attached IO devices, for each node
1429  * and all of its associated minors, the following actions are performed:
1430  *  -  The /devices path of the physical device node or minor
1431  *     is stored in a lookup table along with a reference to the
1432  *     libdevinfo node it represents via add_lookup_entry().
1433  *  -  The device links associated with each device are also
1434  *     stored in the same lookup table along with a reference to
1435  *     the libdevinfo node it represents via the minor walk callback.
1436  *
1437  */
1438 static int
1439 devinfo_node_walk(di_node_t node, void *arg)
1440 {
1441         char                    *devfs_path;
1442 #ifdef DEBUG
1443         char                    *drv;
1444 #endif /* DEBUG */
1445         devinfo_arg_t           *di_arg = (devinfo_arg_t *)arg;
1446 
1447         if (node == DI_NODE_NIL) {
1448                 return (DI_WALK_TERMINATE);
1449         }
1450 
1451         if (((di_state(node) & DI_DRIVER_DETACHED) == 0) &&
1452             ((devfs_path = di_devfs_path(node)) != NULL)) {
1453 
1454                 /* Use the provided path buffer to create full /devices path */
1455                 (void) snprintf(di_arg->pathbuf, MAXPATHLEN, "/devices%s",
1456                     devfs_path);
1457 
1458 #ifdef DEBUG
1459                 dprintf((stderr, "devinfo_node_walk(%s)\n", di_arg->pathbuf));
1460                 if ((drv = di_driver_name(node)) != NULL)
1461                         dprintf((stderr, " driver name %s instance %d\n", drv,
1462                             di_instance(node)));
1463 #endif
1464 
1465                 /* Free the devfs_path */
1466                 di_devfs_path_free(devfs_path);
1467 
1468                 /* Add an entry to the lookup table for this physical device */
1469                 if (add_lookup_entry(di_arg->table, di_arg->pathbuf, node)) {
1470                         dprintf((stderr, "add_lookup_entry: %s\n",
1471                             strerror(errno)));
1472                         di_arg->err = 1;
1473                         return (DI_WALK_TERMINATE);
1474                 }
1475 
1476                 /* Check if this node has minors */
1477                 if ((di_minor_next(node, DI_MINOR_NIL)) != DI_MINOR_NIL) {
1478                         /* Walk this node's minors */
1479                         di_arg->node = node;
1480                         if (di_walk_minor(node, NULL, DI_CHECK_ALIAS, arg,
1481                             devinfo_minor_walk) != 0) {
1482                                 dprintf((stderr, "di_walk_minor: %s\n",
1483                                     strerror(errno)));
1484                                 di_arg->err = 1;
1485                                 return (DI_WALK_TERMINATE);
1486                         }
1487                 }
1488         }
1489 
1490         return (DI_WALK_CONTINUE);
1491 }
1492 
1493 /*
1494  * Use di_devlink_walk to find the /dev link from /devices path for this minor
1495  */
1496 static int
1497 devinfo_minor_walk(di_node_t node, di_minor_t minor, void *arg)
1498 {
1499         char            *name;
1500         char            *devfs_path;
1501         devinfo_arg_t   *di_arg = (devinfo_arg_t *)arg;
1502         char            pathbuf[MAXPATHLEN];
1503 
1504 #ifdef DEBUG
1505         dprintf((stderr, "devinfo_minor_walk(%d) %s\n", minor,
1506             di_arg->pathbuf));
1507 
1508         if ((name = di_minor_name(minor)) != NULL) {
1509                 dprintf((stderr, "  minor name %s\n", name));
1510         }
1511 #endif /* DEBUG */
1512 
1513         /* Terminate the walk when the device node changes */
1514         if (node != di_arg->node) {
1515                 return (DI_WALK_TERMINATE);
1516         }
1517 
1518         /* Construct full /devices path for this minor */
1519         if ((name = di_minor_name(minor)) == NULL) {
1520                 return (DI_WALK_CONTINUE);
1521         }
1522         (void) snprintf(pathbuf, MAXPATHLEN, "%s:%s", di_arg->pathbuf, name);
1523 
1524         /* Add lookup entry for this minor node */
1525         if (add_lookup_entry(di_arg->table, pathbuf, node)) {
1526                 dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
1527                 di_arg->err = 1;
1528                 return (DI_WALK_TERMINATE);
1529         }
1530 
1531         /*
1532          * Walk the associated device links.
1533          * Note that di_devlink_walk() doesn't want "/devices" in its paths.
1534          * Also note that di_devlink_walk() will fail if there are no device
1535          * links, which is fine; so ignore if it fails.  Only check for
1536          * internal failures during such a walk.
1537          */
1538         devfs_path = &pathbuf[strlen("/devices")];
1539         (void) di_devlink_walk(di_arg->linkhd, NULL, devfs_path, 0, arg,
1540             devinfo_devlink_walk);
1541         if (di_arg->err != 0) {
1542                 return (DI_WALK_TERMINATE);
1543         }
1544 
1545         return (DI_WALK_CONTINUE);
1546 }
1547 
1548 static int
1549 devinfo_devlink_walk(di_devlink_t devlink, void *arg)
1550 {
1551         const char      *linkpath;
1552         devinfo_arg_t   *di_arg = (devinfo_arg_t *)arg;
1553 
1554         /* Get the devlink's path */
1555         if ((linkpath = di_devlink_path(devlink)) == NULL) {
1556                 dprintf((stderr, "di_devlink_path: %s\n", strerror(errno)));
1557                 di_arg->err = 1;
1558                 return (DI_WALK_TERMINATE);
1559         }
1560         dprintf((stderr, "devinfo_devlink_walk: %s\n", linkpath));
1561 
1562         /* Add lookup entry for this devlink */
1563         if (add_lookup_entry(di_arg->table, linkpath, di_arg->node)) {
1564                 dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
1565                 di_arg->err = 1;
1566                 return (DI_WALK_TERMINATE);
1567         }
1568 
1569         return (DI_WALK_CONTINUE);
1570 }
1571 
1572 /*
1573  * Map rcm_info_t's to ri_client_t's, filtering out "uninteresting" (hack)
1574  * RCM clients. The number of "interesting" ri_client_t's is returned
1575  * in cnt if passed non-NULL.
1576  */
1577 static int
1578 add_rcm_clients(ri_client_t **client_list, rcmd_t *rcm, rcm_info_t *info,
1579     int flags, int *cnt)
1580 {
1581         rcm_info_tuple_t        *tuple;
1582         char                    *rsrc, *usage;
1583         ri_client_t             *client, *tmp;
1584 
1585         assert(client_list != NULL && rcm != NULL);
1586 
1587         if (info == NULL)
1588                 return (0);
1589 
1590         if (cnt != NULL)
1591                 *cnt = 0;
1592 
1593         tuple = NULL;
1594         while ((tuple = rcm_info_next(info, tuple)) != NULL) {
1595                 if ((rsrc = (char *)rcm_info_rsrc(tuple)) == NULL ||
1596                     (usage = (char *)rcm_info_info(tuple)) == NULL) {
1597                         continue;
1598                 }
1599 
1600                 if (rcm_ignore(rsrc, usage) == 0)
1601                         continue;
1602 
1603                 if ((client = ri_client_alloc(rsrc, usage)) == NULL)
1604                         return (-1);
1605 
1606                 if ((flags & RI_INCLUDE_QUERY) && add_query_state(rcm, client,
1607                     rsrc, usage) != 0) {
1608                         ri_client_free(client);
1609                         return (-1);
1610                 }
1611 
1612                 if (cnt != NULL)
1613                         ++*cnt;
1614 
1615                 /*
1616                  * Link in
1617                  */
1618                 if ((tmp = *client_list) == NULL) {
1619                         *client_list = client;
1620                         continue;
1621                 }
1622                 while (tmp->next != NULL) {
1623                         tmp = tmp->next;
1624                 }
1625                 tmp->next = client;
1626         }
1627 
1628         return (0);
1629 }
1630 
1631 /*
1632  * Currently only filtering out based on known info string prefixes.
1633  */
1634 /* ARGSUSED */
1635 static int
1636 rcm_ignore(char *rsrc, char *infostr)
1637 {
1638         char    **cpp;
1639 
1640         for (cpp = rcm_info_filter; *cpp != NULL; cpp++) {
1641                 if (strncmp(infostr, *cpp, strlen(*cpp)) == 0) {
1642                         return (0);
1643                 }
1644         }
1645         return (-1);
1646 }
1647 
1648 /*
1649  * If this tuple was cached in the offline query pass, add the
1650  * query state and error string to the ri_client_t.
1651  */
1652 static int
1653 add_query_state(rcmd_t *rcm, ri_client_t *client, const char *rsrc,
1654     const char *info)
1655 {
1656         int                     qstate = RI_QUERY_UNKNOWN;
1657         char                    *errstr = NULL;
1658         rcm_info_tuple_t        *cached_tuple;
1659 
1660         if ((cached_tuple = tuple_lookup(rcm, rsrc, info)) != NULL) {
1661                 qstate = state2query(rcm_info_state(cached_tuple));
1662                 errstr = (char *)rcm_info_error(cached_tuple);
1663         }
1664 
1665         if (nvlist_add_int32(client->usg_props, RI_QUERY_STATE, qstate) != 0 ||
1666             (errstr != NULL && nvlist_add_string(client->usg_props,
1667             RI_QUERY_ERR, errstr) != 0)) {
1668                 dprintf((stderr, "nvlist_add fail\n"));
1669                 return (-1);
1670         }
1671 
1672         return (0);
1673 }
1674 
1675 static int
1676 state2query(int rcm_state)
1677 {
1678         int     query;
1679 
1680         switch (rcm_state) {
1681         case RCM_STATE_OFFLINE_QUERY:
1682         case RCM_STATE_SUSPEND_QUERY:
1683                 query = RI_QUERY_OK;
1684                 break;
1685         case RCM_STATE_OFFLINE_QUERY_FAIL:
1686         case RCM_STATE_SUSPEND_QUERY_FAIL:
1687                 query = RI_QUERY_FAIL;
1688                 break;
1689         default:
1690                 query = RI_QUERY_UNKNOWN;
1691                 break;
1692         }
1693 
1694         return (query);
1695 }
1696 
1697 static void
1698 dev_list_append(ri_dev_t **head, ri_dev_t *dev)
1699 {
1700         ri_dev_t        *tmp;
1701 
1702         if ((tmp = *head) == NULL) {
1703                 *head = dev;
1704                 return;
1705         }
1706         while (tmp->next != NULL) {
1707                 tmp = tmp->next;
1708         }
1709         tmp->next = dev;
1710 }
1711 
1712 /*
1713  * The cpu list is ordered on cpuid since CMP cpuids will not necessarily
1714  * be discovered in sequence.
1715  */
1716 static void
1717 dev_list_cpu_insert(ri_dev_t **listp, ri_dev_t *dev, processorid_t newid)
1718 {
1719         ri_dev_t        *tmp;
1720         int32_t         cpuid;
1721 
1722         while ((tmp = *listp) != NULL &&
1723             nvlist_lookup_int32(tmp->conf_props, RI_CPU_ID, &cpuid) == 0 &&
1724             cpuid < newid) {
1725                 listp = &tmp->next;
1726         }
1727 
1728         dev->next = tmp;
1729         *listp = dev;
1730 }
1731 
1732 /*
1733  * Linear lookup. Should convert to hash tab.
1734  */
1735 static rcm_info_tuple_t *
1736 tuple_lookup(rcmd_t *rcm, const char *krsrc, const char *kinfo)
1737 {
1738         rcm_info_tuple_t        *tuple = NULL;
1739         const char              *rsrc, *info;
1740 
1741         if ((rcm == NULL) || (krsrc == NULL) || (kinfo == NULL)) {
1742                 return (NULL);
1743         }
1744 
1745         while ((tuple = rcm_info_next(rcm->offline_query_info,
1746             tuple)) != NULL) {
1747                 if ((rsrc = rcm_info_rsrc(tuple)) == NULL ||
1748                     (info = rcm_info_info(tuple)) == NULL) {
1749                         continue;
1750                 }
1751 
1752                 if (strcmp(rsrc, krsrc) == 0 && strcmp(info, kinfo) == 0) {
1753                         return (tuple);
1754                 }
1755         }
1756         return (NULL);
1757 }
1758 
1759 /*
1760  * Create and link attachment point handle.
1761  */
1762 static ri_ap_t *
1763 ri_ap_alloc(char *ap_id, ri_hdl_t *hdl)
1764 {
1765         ri_ap_t         *ap, *tmp;
1766 
1767         if ((ap = calloc(1, sizeof (*ap))) == NULL) {
1768                 dprintf((stderr, "calloc: %s\n", strerror(errno)));
1769                 return (NULL);
1770         }
1771 
1772         if (nvlist_alloc(&ap->conf_props, NV_UNIQUE_NAME, 0) != 0 ||
1773             nvlist_add_string(ap->conf_props, RI_AP_REQ_ID, ap_id) != 0) {
1774                 if (ap->conf_props != NULL)
1775                         nvlist_free(ap->conf_props);
1776                 free(ap);
1777                 return (NULL);
1778         }
1779 
1780         if ((tmp = hdl->aps) == NULL) {
1781                 hdl->aps = ap;
1782         } else {
1783                 while (tmp->next != NULL) {
1784                         tmp = tmp->next;
1785                 }
1786                 tmp->next = ap;
1787         }
1788 
1789         return (ap);
1790 }
1791 
1792 static ri_dev_t *
1793 ri_dev_alloc(void)
1794 {
1795         ri_dev_t        *dev;
1796 
1797         if ((dev = calloc(1, sizeof (*dev))) == NULL ||
1798             nvlist_alloc(&dev->conf_props, NV_UNIQUE_NAME, 0) != 0) {
1799                 s_free(dev);
1800         }
1801         return (dev);
1802 }
1803 
1804 static ri_dev_t *
1805 io_dev_alloc(char *drv_inst)
1806 {
1807         ri_dev_t        *io;
1808 
1809         assert(drv_inst != NULL);
1810 
1811         if ((io = ri_dev_alloc()) == NULL)
1812                 return (NULL);
1813 
1814         if (nvlist_add_string(io->conf_props, RI_IO_DRV_INST,
1815             drv_inst) != 0) {
1816                 dprintf((stderr, "nvlist_add_string fail\n"));
1817                 ri_dev_free(io);
1818                 return (NULL);
1819         }
1820 
1821         return (io);
1822 }
1823 
1824 static ri_client_t *
1825 ri_client_alloc(char *rsrc, char *usage)
1826 {
1827         ri_client_t     *client;
1828 
1829         assert(rsrc != NULL && usage != NULL);
1830 
1831         if ((client = calloc(1, sizeof (*client))) == NULL) {
1832                 dprintf((stderr, "calloc: %s\n", strerror(errno)));
1833                 return (NULL);
1834         }
1835 
1836         if (nvlist_alloc(&client->usg_props, NV_UNIQUE_NAME, 0) != 0) {
1837                 dprintf((stderr, "nvlist_alloc fail\n"));
1838                 free(client);
1839                 return (NULL);
1840         }
1841 
1842         if (nvlist_add_string(client->usg_props, RI_CLIENT_RSRC, rsrc) != 0 ||
1843             nvlist_add_string(client->usg_props, RI_CLIENT_USAGE, usage) != 0) {
1844                 dprintf((stderr, "nvlist_add_string fail\n"));
1845                 ri_client_free(client);
1846                 return (NULL);
1847         }
1848 
1849         return (client);
1850 }
1851 
1852 static void
1853 apd_tbl_free(apd_t apd_tbl[], int napds)
1854 {
1855         int     i;
1856         apd_t   *apd;
1857 
1858         for (i = 0, apd = apd_tbl; i < napds; i++, apd++)
1859                 s_free(apd->cfga_list_data);
1860 
1861         free(apd_tbl);
1862 }
1863 
1864 static char *
1865 pstate2str(int pi_state)
1866 {
1867         char    *state;
1868 
1869         switch (pi_state) {
1870         case P_OFFLINE:
1871                 state = PS_OFFLINE;
1872                 break;
1873         case P_ONLINE:
1874                 state = PS_ONLINE;
1875                 break;
1876         case P_FAULTED:
1877                 state = PS_FAULTED;
1878                 break;
1879         case P_POWEROFF:
1880                 state = PS_POWEROFF;
1881                 break;
1882         case P_NOINTR:
1883                 state = PS_NOINTR;
1884                 break;
1885         case P_SPARE:
1886                 state = PS_SPARE;
1887                 break;
1888         default:
1889                 state = "unknown";
1890                 break;
1891         }
1892 
1893         return (state);
1894 }
1895 
1896 #ifdef DEBUG
1897 static void
1898 dump_apd_tbl(FILE *fp, apd_t *apds, int n_apds)
1899 {
1900         int                     i, j;
1901         cfga_list_data_t        *cfga_ldata;
1902 
1903         for (i = 0; i < n_apds; i++, apds++) {
1904                 dprintf((stderr, "apd_tbl[%d].nlist=%d\n", i, apds->nlist));
1905                 for (j = 0, cfga_ldata = apds->cfga_list_data; j < apds->nlist;
1906                     j++, cfga_ldata++) {
1907                         dprintf((fp,
1908                             "apd_tbl[%d].cfga_list_data[%d].ap_log_id=%s\n",
1909                             i, j, cfga_ldata->ap_log_id));
1910                 }
1911         }
1912 }
1913 #endif /* DEBUG */
1914 
1915 /*
1916  * The lookup table is a simple array that is grown in chunks
1917  * to optimize memory allocation.
1918  * Indices are assigned to each array entry in-order so that
1919  * the original device tree ordering can be discerned at a later time.
1920  *
1921  * add_lookup_entry is called from the libdevinfo tree traversal callbacks:
1922  * 1) devinfo_node_walk - physical device path for each node in
1923  *    the devinfo tree via di_walk_node(), lookup entry name is
1924  *    /devices/[di_devfs_path]
1925  * 2) devinfo_minor_walk - physical device path plus minor name for
1926  *    each minor associated with a node via di_walk_minor(), lookup entry
1927  *    name is /devices/[di_devfs_path:di_minor_name]
1928  * 3) devinfo_devlink_walk - for each minor's /dev link from its /devices
1929  *    path via di_devlink_walk(), lookup entry name is di_devlink_path()
1930  */
1931 static int
1932 add_lookup_entry(lookup_table_t *table, const char *name, di_node_t node)
1933 {
1934         size_t          size;
1935         lookup_entry_t  *new_table;
1936 
1937 
1938         /* Grow the lookup table by USAGE_ALLOC_SIZE slots if necessary */
1939         if (table->n_entries == table->n_slots) {
1940                 size = (table->n_slots + USAGE_ALLOC_SIZE) *
1941                     sizeof (lookup_entry_t);
1942                 new_table = (lookup_entry_t *)realloc(table->table, size);
1943                 if (new_table == NULL) {
1944                         dprintf((stderr, "add_lookup_entry: alloc failed: %s\n",
1945                             strerror(errno)));
1946                         errno = ENOMEM;
1947                         return (-1);
1948                 }
1949                 table->table = new_table;
1950                 table->n_slots += USAGE_ALLOC_SIZE;
1951         }
1952 
1953         dprintf((stderr, "add_lookup_entry[%d]:%s\n", table->n_entries, name));
1954 
1955         /* Add this name to the next slot */
1956         if ((table->table[table->n_entries].name = strdup(name)) == NULL) {
1957                 dprintf((stderr, "add_lookup_entry: strdup failed: %s\n",
1958                     strerror(errno)));
1959                 errno = ENOMEM;
1960                 return (-1);
1961         }
1962         table->table[table->n_entries].index = table->n_entries;
1963         table->table[table->n_entries].node = node;
1964         table->table[table->n_entries].n_usage = 0;
1965         table->table[table->n_entries].usage = NULL;
1966         table->n_entries += 1;
1967 
1968         return (0);
1969 }
1970 
1971 /*
1972  * lookup table entry names are full pathname strings, all start with /
1973  */
1974 static int
1975 table_compare_names(const void *a, const void *b)
1976 {
1977         lookup_entry_t *entry1 = (lookup_entry_t *)a;
1978         lookup_entry_t *entry2 = (lookup_entry_t *)b;
1979 
1980         return (strcmp(entry1->name, entry2->name));
1981 }
1982 
1983 
1984 /*
1985  * Compare two indices and return -1 for less, 1 for greater, 0 for equal
1986  */
1987 static int
1988 table_compare_indices(const void *a, const void *b)
1989 {
1990         lookup_entry_t *entry1 = (lookup_entry_t *)a;
1991         lookup_entry_t *entry2 = (lookup_entry_t *)b;
1992 
1993         if (entry1->index < entry2->index)
1994                 return (-1);
1995         if (entry1->index > entry2->index)
1996                 return (1);
1997         return (0);
1998 }
1999 
2000 /*
2001  * Given a RCM resource name, find the matching entry in the IO device table
2002  */
2003 static lookup_entry_t *
2004 lookup(lookup_table_t *table, const char *rcm_rsrc)
2005 {
2006         lookup_entry_t  *entry;
2007         lookup_entry_t  lookup_arg;
2008 
2009         dprintf((stderr, "lookup:%s\n", rcm_rsrc));
2010         lookup_arg.name = (char *)rcm_rsrc;
2011         entry = bsearch(&lookup_arg, table->table, table->n_entries,
2012             sizeof (lookup_entry_t), table_compare_names);
2013 
2014 #ifdef DEBUG
2015         if (entry != NULL) {
2016                 dprintf((stderr, " found entry:%d\n", entry->index));
2017         }
2018 #endif /* DEBUG */
2019         return (entry);
2020 }
2021 
2022 /*
2023  * Add RCM usage to the given device table entry.
2024  * Returns -1 on realloc failure.
2025  */
2026 static int
2027 add_usage(lookup_entry_t *entry, const char *rcm_rsrc, rcm_info_tuple_t *tuple)
2028 {
2029         size_t          size;
2030         const char      *info;
2031         usage_t         *new_usage;
2032 
2033         if ((entry == NULL) ||
2034             ((info = rcm_info_info(tuple)) == NULL))
2035                 return (0);
2036 
2037         if (rcm_ignore((char *)rcm_rsrc, (char *)info) == 0)
2038                 return (0);
2039 
2040         size = (entry->n_usage + 1) * sizeof (usage_t);
2041         new_usage = (usage_t *)realloc(entry->usage, size);
2042         if (new_usage == NULL) {
2043                 dprintf((stderr, "add_usage: alloc failed: %s\n",
2044                     strerror(errno)));
2045                 return (-1);
2046         }
2047         dprintf((stderr, "add_usage: entry %d rsrc: %s info: %s\n",
2048             entry->index, rcm_rsrc, info));
2049 
2050         entry->usage = new_usage;
2051         entry->usage[entry->n_usage].rsrc = rcm_rsrc;
2052         entry->usage[entry->n_usage].info = info;
2053         entry->n_usage += 1;
2054         return (0);
2055 }
2056 
2057 static void
2058 empty_table(lookup_table_t *table)
2059 {
2060         int i;
2061 
2062         if (table) {
2063                 for (i = 0; i < table->n_entries; i++) {
2064                         if (table->table[i].name)
2065                                 free(table->table[i].name);
2066                         /*
2067                          * Note: the strings pointed to from within
2068                          * usage were freed already by rcm_free_info
2069                          */
2070                         if (table->table[i].usage)
2071                                 free(table->table[i].usage);
2072                 }
2073                 if (table->table)
2074                         free(table->table);
2075                 table->table = NULL;
2076                 table->n_entries = 0;
2077                 table->n_slots = 0;
2078         }
2079 }