1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License, Version 1.0 only
   6  * (the "License").  You may not use this file except in compliance
   7  * with the License.
   8  *
   9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  10  * or http://www.opensolaris.org/os/licensing.
  11  * See the License for the specific language governing permissions
  12  * and limitations under the License.
  13  *
  14  * When distributing Covered Code, include this CDDL HEADER in each
  15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  16  * If applicable, add the following below this CDDL HEADER, with the
  17  * fields enclosed by brackets "[]" replaced with your own identifying
  18  * information: Portions Copyright [yyyy] [name of copyright owner]
  19  *
  20  * CDDL HEADER END
  21  */
  22 /*
  23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 #include <mdb/mdb_param.h>
  28 #include <mdb/mdb_modapi.h>
  29 
  30 #include <sys/fs/ufs_inode.h>
  31 #include <sys/kmem_impl.h>
  32 #include <sys/vmem_impl.h>
  33 #include <sys/modctl.h>
  34 #include <sys/kobj.h>
  35 #include <sys/kobj_impl.h>
  36 #include <vm/seg_vn.h>
  37 #include <vm/as.h>
  38 #include <vm/seg_map.h>
  39 #include <mdb/mdb_ctf.h>
  40 
  41 #include "kmem.h"
  42 #include "leaky_impl.h"
  43 
  44 /*
  45  * This file defines the genunix target for leaky.c.  There are three types
  46  * of buffers in the kernel's heap:  TYPE_VMEM, for kmem_oversize allocations,
  47  * TYPE_KMEM, for kmem_cache_alloc() allocations bufctl_audit_ts, and
  48  * TYPE_CACHE, for kmem_cache_alloc() allocation without bufctl_audit_ts.
  49  *
  50  * See "leaky_impl.h" for the target interface definition.
  51  */
  52 
  53 #define TYPE_VMEM       0               /* lkb_data is the vmem_seg's size */
  54 #define TYPE_CACHE      1               /* lkb_cid is the bufctl's cache */
  55 #define TYPE_KMEM       2               /* lkb_cid is the bufctl's cache */
  56 
  57 #define LKM_CTL_BUFCTL  0       /* normal allocation, PTR is bufctl */
  58 #define LKM_CTL_VMSEG   1       /* oversize allocation, PTR is vmem_seg_t */
  59 #define LKM_CTL_CACHE   2       /* normal alloc, non-debug, PTR is cache */
  60 #define LKM_CTL_MASK    3L
  61 
  62 #define LKM_CTL(ptr, type)      (LKM_CTLPTR(ptr) | (type))
  63 #define LKM_CTLPTR(ctl)         ((uintptr_t)(ctl) & ~(LKM_CTL_MASK))
  64 #define LKM_CTLTYPE(ctl)        ((uintptr_t)(ctl) &  (LKM_CTL_MASK))
  65 
  66 static int kmem_lite_count = 0; /* cache of the kernel's version */
  67 
  68 /*ARGSUSED*/
  69 static int
  70 leaky_mtab(uintptr_t addr, const kmem_bufctl_audit_t *bcp, leak_mtab_t **lmp)
  71 {
  72         leak_mtab_t *lm = (*lmp)++;
  73 
  74         lm->lkm_base = (uintptr_t)bcp->bc_addr;
  75         lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL);
  76 
  77         return (WALK_NEXT);
  78 }
  79 
  80 /*ARGSUSED*/
  81 static int
  82 leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp)
  83 {
  84         leak_mtab_t *lm = (*lmp)++;
  85 
  86         lm->lkm_base = addr;
  87 
  88         return (WALK_NEXT);
  89 }
  90 
  91 static int
  92 leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp)
  93 {
  94         leak_mtab_t *lm = (*lmp)++;
  95 
  96         lm->lkm_base = seg->vs_start;
  97         lm->lkm_limit = seg->vs_end;
  98         lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG);
  99 
 100         return (WALK_NEXT);
 101 }
 102 
 103 static int
 104 leaky_vmem_interested(const vmem_t *vmem)
 105 {
 106         if (strcmp(vmem->vm_name, "kmem_oversize") != 0 &&
 107             strcmp(vmem->vm_name, "static_alloc") != 0)
 108                 return (0);
 109         return (1);
 110 }
 111 
 112 static int
 113 leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp)
 114 {
 115         if (!leaky_vmem_interested(vmem))
 116                 return (WALK_NEXT);
 117 
 118         if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1)
 119                 mdb_warn("can't walk vmem_alloc for kmem_oversize (%p)", addr);
 120 
 121         return (WALK_NEXT);
 122 }
 123 
 124 /*ARGSUSED*/
 125 static int
 126 leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est)
 127 {
 128         if (!leaky_vmem_interested(vmem))
 129                 return (WALK_NEXT);
 130 
 131         *est += (int)(vmem->vm_kstat.vk_alloc.value.ui64 -
 132             vmem->vm_kstat.vk_free.value.ui64);
 133 
 134         return (WALK_NEXT);
 135 }
 136 
 137 static int
 138 leaky_interested(const kmem_cache_t *c)
 139 {
 140         vmem_t vmem;
 141 
 142         /*
 143          * ignore HAT-related caches that happen to derive from kmem_default
 144          */
 145         if (strcmp(c->cache_name, "sfmmu1_cache") == 0 ||
 146             strcmp(c->cache_name, "sf_hment_cache") == 0 ||
 147             strcmp(c->cache_name, "pa_hment_cache") == 0)
 148                 return (0);
 149 
 150         if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) {
 151                 mdb_warn("cannot read arena %p for cache '%s'",
 152                     (uintptr_t)c->cache_arena, c->cache_name);
 153                 return (0);
 154         }
 155 
 156         /*
 157          * If this cache isn't allocating from the kmem_default,
 158          * kmem_firewall, or static vmem arenas, we're not interested.
 159          */
 160         if (strcmp(vmem.vm_name, "kmem_default") != 0 &&
 161             strcmp(vmem.vm_name, "kmem_firewall") != 0 &&
 162             strcmp(vmem.vm_name, "static") != 0)
 163                 return (0);
 164 
 165         return (1);
 166 }
 167 
 168 static int
 169 leaky_estimate(uintptr_t addr, const kmem_cache_t *c, size_t *est)
 170 {
 171         if (!leaky_interested(c))
 172                 return (WALK_NEXT);
 173 
 174         *est += kmem_estimate_allocated(addr, c);
 175 
 176         return (WALK_NEXT);
 177 }
 178 
 179 /*ARGSUSED*/
 180 static int
 181 leaky_cache(uintptr_t addr, const kmem_cache_t *c, leak_mtab_t **lmp)
 182 {
 183         leak_mtab_t *lm = *lmp;
 184         mdb_walk_cb_t cb;
 185         const char *walk;
 186         int audit = (c->cache_flags & KMF_AUDIT);
 187 
 188         if (!leaky_interested(c))
 189                 return (WALK_NEXT);
 190 
 191         if (audit) {
 192                 walk = "bufctl";
 193                 cb = (mdb_walk_cb_t)leaky_mtab;
 194         } else {
 195                 walk = "kmem";
 196                 cb = (mdb_walk_cb_t)leaky_mtab_addr;
 197         }
 198         if (mdb_pwalk(walk, cb, lmp, addr) == -1) {
 199                 mdb_warn("can't walk kmem for cache %p (%s)", addr,
 200                     c->cache_name);
 201                 return (WALK_DONE);
 202         }
 203 
 204         for (; lm < *lmp; lm++) {
 205                 lm->lkm_limit = lm->lkm_base + c->cache_bufsize;
 206                 if (!audit)
 207                         lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE);
 208         }
 209 
 210         return (WALK_NEXT);
 211 }
 212 
 213 /*ARGSUSED*/
 214 static int
 215 leaky_scan_buffer(uintptr_t addr, const void *ignored, const kmem_cache_t *c)
 216 {
 217         leaky_grep(addr, c->cache_bufsize);
 218 
 219         /*
 220          * free, constructed KMF_LITE buffers keep their first uint64_t in
 221          * their buftag's redzone.
 222          */
 223         if (c->cache_flags & KMF_LITE) {
 224                 /* LINTED alignment */
 225                 kmem_buftag_t *btp = KMEM_BUFTAG(c, addr);
 226                 leaky_grep((uintptr_t)&btp->bt_redzone,
 227                     sizeof (btp->bt_redzone));
 228         }
 229 
 230         return (WALK_NEXT);
 231 }
 232 
 233 /*ARGSUSED*/
 234 static int
 235 leaky_scan_cache(uintptr_t addr, const kmem_cache_t *c, void *ignored)
 236 {
 237         if (!leaky_interested(c))
 238                 return (WALK_NEXT);
 239 
 240         /*
 241          * Scan all of the free, constructed buffers, since they may have
 242          * pointers to allocated objects.
 243          */
 244         if (mdb_pwalk("freemem_constructed",
 245             (mdb_walk_cb_t)leaky_scan_buffer, (void *)c, addr) == -1) {
 246                 mdb_warn("can't walk freemem_constructed for cache %p (%s)",
 247                     addr, c->cache_name);
 248                 return (WALK_DONE);
 249         }
 250 
 251         return (WALK_NEXT);
 252 }
 253 
 254 /*ARGSUSED*/
 255 static int
 256 leaky_modctl(uintptr_t addr, const struct modctl *m, int *ignored)
 257 {
 258         struct module mod;
 259         char name[MODMAXNAMELEN];
 260 
 261         if (m->mod_mp == NULL)
 262                 return (WALK_NEXT);
 263 
 264         if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
 265                 mdb_warn("couldn't read modctl %p's module", addr);
 266                 return (WALK_NEXT);
 267         }
 268 
 269         if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1)
 270                 (void) mdb_snprintf(name, sizeof (name), "0x%p", addr);
 271 
 272         leaky_grep((uintptr_t)m->mod_mp, sizeof (struct module));
 273         leaky_grep((uintptr_t)mod.data, mod.data_size);
 274         leaky_grep((uintptr_t)mod.bss, mod.bss_size);
 275 
 276         return (WALK_NEXT);
 277 }
 278 
 279 static int
 280 leaky_thread(uintptr_t addr, const kthread_t *t, unsigned long *pagesize)
 281 {
 282         uintptr_t size, base = (uintptr_t)t->t_stkbase;
 283         uintptr_t stk = (uintptr_t)t->t_stk;
 284 
 285         if (t->t_state != TS_FREE)
 286                 leaky_grep(base, stk - base);
 287 
 288         /*
 289          * There is always gunk hanging out between t_stk and the page
 290          * boundary.  If this thread structure wasn't kmem allocated,
 291          * this will include the thread structure itself.  If the thread
 292          * _is_ kmem allocated, we'll be able to get to it via allthreads.
 293          */
 294         size = *pagesize - (stk & (*pagesize - 1));
 295 
 296         leaky_grep(stk, size);
 297 
 298         return (WALK_NEXT);
 299 }
 300 
 301 /*ARGSUSED*/
 302 static int
 303 leaky_kstat(uintptr_t addr, vmem_seg_t *seg, void *ignored)
 304 {
 305         leaky_grep(seg->vs_start, seg->vs_end - seg->vs_start);
 306 
 307         return (WALK_NEXT);
 308 }
 309 
 310 static void
 311 leaky_kludge(void)
 312 {
 313         GElf_Sym sym;
 314         mdb_ctf_id_t id, rid;
 315 
 316         int max_mem_nodes;
 317         uintptr_t *counters;
 318         size_t ncounters;
 319         ssize_t hwpm_size;
 320         int idx;
 321 
 322         /*
 323          * Because of DR, the page counters (which live in the kmem64 segment)
 324          * can point into kmem_alloc()ed memory.  The "page_counters" array
 325          * is multi-dimensional, and each entry points to an array of
 326          * "hw_page_map_t"s which is "max_mem_nodes" in length.
 327          *
 328          * To keep this from having too much grotty knowledge of internals,
 329          * we use CTF data to get the size of the structure.  For simplicity,
 330          * we treat the page_counters array as a flat array of pointers, and
 331          * use its size to determine how much to scan.  Unused entries will
 332          * be NULL.
 333          */
 334         if (mdb_lookup_by_name("page_counters", &sym) == -1) {
 335                 mdb_warn("unable to lookup page_counters");
 336                 return;
 337         }
 338 
 339         if (mdb_readvar(&max_mem_nodes, "max_mem_nodes") == -1) {
 340                 mdb_warn("unable to read max_mem_nodes");
 341                 return;
 342         }
 343 
 344         if (mdb_ctf_lookup_by_name("unix`hw_page_map_t", &id) == -1 ||
 345             mdb_ctf_type_resolve(id, &rid) == -1 ||
 346             (hwpm_size = mdb_ctf_type_size(rid)) < 0) {
 347                 mdb_warn("unable to lookup unix`hw_page_map_t");
 348                 return;
 349         }
 350 
 351         counters = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC);
 352 
 353         if (mdb_vread(counters, sym.st_size, (uintptr_t)sym.st_value) == -1) {
 354                 mdb_warn("unable to read page_counters");
 355                 return;
 356         }
 357 
 358         ncounters = sym.st_size / sizeof (counters);
 359 
 360         for (idx = 0; idx < ncounters; idx++) {
 361                 uintptr_t addr = counters[idx];
 362                 if (addr != 0)
 363                         leaky_grep(addr, hwpm_size * max_mem_nodes);
 364         }
 365 }
 366 
 367 int
 368 leaky_subr_estimate(size_t *estp)
 369 {
 370         uintptr_t panicstr;
 371         int state;
 372 
 373         if ((state = mdb_get_state()) == MDB_STATE_RUNNING) {
 374                 mdb_warn("findleaks: can only be run on a system "
 375                     "dump or under kmdb; see dumpadm(1M)\n");
 376                 return (DCMD_ERR);
 377         }
 378 
 379         if (mdb_readvar(&panicstr, "panicstr") == -1) {
 380                 mdb_warn("can't read variable 'panicstr'");
 381                 return (DCMD_ERR);
 382         }
 383 
 384         if (state != MDB_STATE_STOPPED && panicstr == NULL) {
 385                 mdb_warn("findleaks: cannot be run on a live dump.\n");
 386                 return (DCMD_ERR);
 387         }
 388 
 389         if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) {
 390                 mdb_warn("couldn't walk 'kmem_cache'");
 391                 return (DCMD_ERR);
 392         }
 393 
 394         if (*estp == 0) {
 395                 mdb_warn("findleaks: no buffers found\n");
 396                 return (DCMD_ERR);
 397         }
 398 
 399         if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) {
 400                 mdb_warn("couldn't walk 'vmem'");
 401                 return (DCMD_ERR);
 402         }
 403 
 404         return (DCMD_OK);
 405 }
 406 
 407 int
 408 leaky_subr_fill(leak_mtab_t **lmpp)
 409 {
 410         if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) {
 411                 mdb_warn("couldn't walk 'vmem'");
 412                 return (DCMD_ERR);
 413         }
 414 
 415         if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) {
 416                 mdb_warn("couldn't walk 'kmem_cache'");
 417                 return (DCMD_ERR);
 418         }
 419 
 420         if (mdb_readvar(&kmem_lite_count, "kmem_lite_count") == -1) {
 421                 mdb_warn("couldn't read 'kmem_lite_count'");
 422                 kmem_lite_count = 0;
 423         } else if (kmem_lite_count > 16) {
 424                 mdb_warn("kmem_lite_count nonsensical, ignored\n");
 425                 kmem_lite_count = 0;
 426         }
 427 
 428         return (DCMD_OK);
 429 }
 430 
 431 int
 432 leaky_subr_run(void)
 433 {
 434         unsigned long ps = PAGESIZE;
 435         uintptr_t kstat_arena;
 436         uintptr_t dmods;
 437 
 438         leaky_kludge();
 439 
 440         if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_scan_cache,
 441             NULL) == -1) {
 442                 mdb_warn("couldn't walk 'kmem_cache'");
 443                 return (DCMD_ERR);
 444         }
 445 
 446         if (mdb_walk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL) == -1) {
 447                 mdb_warn("couldn't walk 'modctl'");
 448                 return (DCMD_ERR);
 449         }
 450 
 451         /*
 452          * If kmdb is loaded, we need to walk it's module list, since kmdb
 453          * modctl structures can reference kmem allocations.
 454          */
 455         if ((mdb_readvar(&dmods, "kdi_dmods") != -1) && (dmods != NULL))
 456                 (void) mdb_pwalk("modctl", (mdb_walk_cb_t)leaky_modctl,
 457                     NULL, dmods);
 458 
 459         if (mdb_walk("thread", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
 460                 mdb_warn("couldn't walk 'thread'");
 461                 return (DCMD_ERR);
 462         }
 463 
 464         if (mdb_walk("deathrow", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
 465                 mdb_warn("couldn't walk 'deathrow'");
 466                 return (DCMD_ERR);
 467         }
 468 
 469         if (mdb_readvar(&kstat_arena, "kstat_arena") == -1) {
 470                 mdb_warn("couldn't read 'kstat_arena'");
 471                 return (DCMD_ERR);
 472         }
 473 
 474         if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_kstat,
 475             NULL, kstat_arena) == -1) {
 476                 mdb_warn("couldn't walk kstat vmem arena");
 477                 return (DCMD_ERR);
 478         }
 479 
 480         return (DCMD_OK);
 481 }
 482 
 483 void
 484 leaky_subr_add_leak(leak_mtab_t *lmp)
 485 {
 486         uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl);
 487         size_t depth;
 488 
 489         switch (LKM_CTLTYPE(lmp->lkm_bufctl)) {
 490         case LKM_CTL_VMSEG: {
 491                 vmem_seg_t vs;
 492 
 493                 if (mdb_vread(&vs, sizeof (vs), addr) == -1) {
 494                         mdb_warn("couldn't read leaked vmem_seg at addr %p",
 495                             addr);
 496                         return;
 497                 }
 498                 depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH);
 499 
 500                 leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp,
 501                     vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start));
 502                 break;
 503         }
 504         case LKM_CTL_BUFCTL: {
 505                 kmem_bufctl_audit_t bc;
 506 
 507                 if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
 508                         mdb_warn("couldn't read leaked bufctl at addr %p",
 509                             addr);
 510                         return;
 511                 }
 512 
 513                 depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH);
 514 
 515                 /*
 516                  * The top of the stack will be kmem_cache_alloc+offset.
 517                  * Since the offset in kmem_cache_alloc() isn't interesting
 518                  * we skip that frame for the purposes of uniquifying stacks.
 519                  *
 520                  * We also use the cache pointer as the leaks's cid, to
 521                  * prevent the coalescing of leaks from different caches.
 522                  */
 523                 if (depth > 0)
 524                         depth--;
 525                 leaky_add_leak(TYPE_KMEM, addr, (uintptr_t)bc.bc_addr,
 526                     bc.bc_timestamp, bc.bc_stack + 1, depth,
 527                     (uintptr_t)bc.bc_cache, 0);
 528                 break;
 529         }
 530         case LKM_CTL_CACHE: {
 531                 kmem_cache_t cache;
 532                 kmem_buftag_lite_t bt;
 533                 pc_t caller;
 534                 int depth = 0;
 535 
 536                 /*
 537                  * For KMF_LITE caches, we can get the allocation PC
 538                  * out of the buftag structure.
 539                  */
 540                 if (mdb_vread(&cache, sizeof (cache), addr) != -1 &&
 541                     (cache.cache_flags & KMF_LITE) &&
 542                     kmem_lite_count > 0 &&
 543                     mdb_vread(&bt, sizeof (bt),
 544                     /* LINTED alignment */
 545                     (uintptr_t)KMEM_BUFTAG(&cache, lmp->lkm_base)) != -1) {
 546                         caller = bt.bt_history[0];
 547                         depth = 1;
 548                 }
 549                 leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0,
 550                     &caller, depth, addr, addr);
 551                 break;
 552         }
 553         default:
 554                 mdb_warn("internal error: invalid leak_bufctl_t\n");
 555                 break;
 556         }
 557 }
 558 
 559 static void
 560 leaky_subr_caller(const pc_t *stack, uint_t depth, char *buf, uintptr_t *pcp)
 561 {
 562         int i;
 563         GElf_Sym sym;
 564         uintptr_t pc = 0;
 565 
 566         buf[0] = 0;
 567 
 568         for (i = 0; i < depth; i++) {
 569                 pc = stack[i];
 570 
 571                 if (mdb_lookup_by_addr(pc,
 572                     MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1)
 573                         continue;
 574                 if (strncmp(buf, "kmem_", 5) == 0)
 575                         continue;
 576                 if (strncmp(buf, "vmem_", 5) == 0)
 577                         continue;
 578                 *pcp = pc;
 579 
 580                 return;
 581         }
 582 
 583         /*
 584          * We're only here if the entire call chain begins with "kmem_";
 585          * this shouldn't happen, but we'll just use the last caller.
 586          */
 587         *pcp = pc;
 588 }
 589 
 590 int
 591 leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs)
 592 {
 593         char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN];
 594         uintptr_t lcaller, rcaller;
 595         int rval;
 596 
 597         leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller);
 598         leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller);
 599 
 600         if (rval = strcmp(lbuf, rbuf))
 601                 return (rval);
 602 
 603         if (lcaller < rcaller)
 604                 return (-1);
 605 
 606         if (lcaller > rcaller)
 607                 return (1);
 608 
 609         if (lhs->lkb_data < rhs->lkb_data)
 610                 return (-1);
 611 
 612         if (lhs->lkb_data > rhs->lkb_data)
 613                 return (1);
 614 
 615         return (0);
 616 }
 617 
 618 /*
 619  * Global state variables used by the leaky_subr_dump_* routines.  Note that
 620  * they are carefully cleared before use.
 621  */
 622 static int lk_vmem_seen;
 623 static int lk_cache_seen;
 624 static int lk_kmem_seen;
 625 static size_t lk_ttl;
 626 static size_t lk_bytes;
 627 
 628 void
 629 leaky_subr_dump_start(int type)
 630 {
 631         switch (type) {
 632         case TYPE_VMEM:
 633                 lk_vmem_seen = 0;
 634                 break;
 635         case TYPE_CACHE:
 636                 lk_cache_seen = 0;
 637                 break;
 638         case TYPE_KMEM:
 639                 lk_kmem_seen = 0;
 640                 break;
 641         default:
 642                 break;
 643         }
 644 
 645         lk_ttl = 0;
 646         lk_bytes = 0;
 647 }
 648 
 649 void
 650 leaky_subr_dump(const leak_bufctl_t *lkb, int verbose)
 651 {
 652         const leak_bufctl_t *cur;
 653         kmem_cache_t cache;
 654         size_t min, max, size;
 655         char sz[30];
 656         char c[MDB_SYM_NAMLEN];
 657         uintptr_t caller;
 658 
 659         if (verbose) {
 660                 lk_ttl = 0;
 661                 lk_bytes = 0;
 662         }
 663 
 664         switch (lkb->lkb_type) {
 665         case TYPE_VMEM:
 666                 if (!verbose && !lk_vmem_seen) {
 667                         lk_vmem_seen = 1;
 668                         mdb_printf("%-16s %7s %?s %s\n",
 669                             "BYTES", "LEAKED", "VMEM_SEG", "CALLER");
 670                 }
 671 
 672                 min = max = lkb->lkb_data;
 673 
 674                 for (cur = lkb; cur != NULL; cur = cur->lkb_next) {
 675                         size = cur->lkb_data;
 676 
 677                         if (size < min)
 678                                 min = size;
 679                         if (size > max)
 680                                 max = size;
 681 
 682                         lk_ttl++;
 683                         lk_bytes += size;
 684                 }
 685 
 686                 if (min == max)
 687                         (void) mdb_snprintf(sz, sizeof (sz), "%ld", min);
 688                 else
 689                         (void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld",
 690                             min, max);
 691 
 692                 if (!verbose) {
 693                         leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
 694                             c, &caller);
 695 
 696                         if (caller != 0) {
 697                                 (void) mdb_snprintf(c, sizeof (c),
 698                                     "%a", caller);
 699                         } else {
 700                                 (void) mdb_snprintf(c, sizeof (c),
 701                                     "%s", "?");
 702                         }
 703                         mdb_printf("%-16s %7d %?p %s\n", sz, lkb->lkb_dups + 1,
 704                             lkb->lkb_addr, c);
 705                 } else {
 706                         mdb_arg_t v;
 707 
 708                         if (lk_ttl == 1)
 709                                 mdb_printf("kmem_oversize leak: 1 vmem_seg, "
 710                                     "%ld bytes\n", lk_bytes);
 711                         else
 712                                 mdb_printf("kmem_oversize leak: %d vmem_segs, "
 713                                     "%s bytes each, %ld bytes total\n",
 714                                     lk_ttl, sz, lk_bytes);
 715 
 716                         v.a_type = MDB_TYPE_STRING;
 717                         v.a_un.a_str = "-v";
 718 
 719                         if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr,
 720                             DCMD_ADDRSPEC, 1, &v) == -1) {
 721                                 mdb_warn("'%p::vmem_seg -v' failed",
 722                                     lkb->lkb_addr);
 723                         }
 724                 }
 725                 return;
 726 
 727         case TYPE_CACHE:
 728                 if (!verbose && !lk_cache_seen) {
 729                         lk_cache_seen = 1;
 730                         if (lk_vmem_seen)
 731                                 mdb_printf("\n");
 732                         mdb_printf("%-?s %7s %?s %s\n",
 733                             "CACHE", "LEAKED", "BUFFER", "CALLER");
 734                 }
 735 
 736                 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) {
 737                         /*
 738                          * This _really_ shouldn't happen; we shouldn't
 739                          * have been able to get this far if this
 740                          * cache wasn't readable.
 741                          */
 742                         mdb_warn("can't read cache %p for leaked "
 743                             "buffer %p", lkb->lkb_data, lkb->lkb_addr);
 744                         return;
 745                 }
 746 
 747                 lk_ttl += lkb->lkb_dups + 1;
 748                 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
 749 
 750                 caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0];
 751                 if (caller != 0) {
 752                         (void) mdb_snprintf(c, sizeof (c), "%a", caller);
 753                 } else {
 754                         (void) mdb_snprintf(c, sizeof (c),
 755                             "%s", (verbose) ? "" : "?");
 756                 }
 757 
 758                 if (!verbose) {
 759                         mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
 760                             lkb->lkb_dups + 1, lkb->lkb_addr, c);
 761                 } else {
 762                         if (lk_ttl == 1)
 763                                 mdb_printf("%s leak: 1 buffer, %ld bytes,\n",
 764                                     cache.cache_name, lk_bytes);
 765                         else
 766                                 mdb_printf("%s leak: %d buffers, "
 767                                     "%ld bytes each, %ld bytes total,\n",
 768                                     cache.cache_name, lk_ttl,
 769                                     cache.cache_bufsize, lk_bytes);
 770 
 771                         mdb_printf("    sample addr %p%s%s\n",
 772                             lkb->lkb_addr, (caller == 0) ? "" : ", caller ", c);
 773                 }
 774                 return;
 775 
 776         case TYPE_KMEM:
 777                 if (!verbose && !lk_kmem_seen) {
 778                         lk_kmem_seen = 1;
 779                         if (lk_vmem_seen || lk_cache_seen)
 780                                 mdb_printf("\n");
 781                         mdb_printf("%-?s %7s %?s %s\n",
 782                             "CACHE", "LEAKED", "BUFCTL", "CALLER");
 783                 }
 784 
 785                 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_cid) == -1) {
 786                         /*
 787                          * This _really_ shouldn't happen; we shouldn't
 788                          * have been able to get this far if this
 789                          * cache wasn't readable.
 790                          */
 791                         mdb_warn("can't read cache %p for leaked "
 792                             "bufctl %p", lkb->lkb_cid, lkb->lkb_addr);
 793                         return;
 794                 }
 795 
 796                 lk_ttl += lkb->lkb_dups + 1;
 797                 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
 798 
 799                 if (!verbose) {
 800                         leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
 801                             c, &caller);
 802 
 803                         if (caller != 0) {
 804                                 (void) mdb_snprintf(c, sizeof (c),
 805                                     "%a", caller);
 806                         } else {
 807                                 (void) mdb_snprintf(c, sizeof (c),
 808                                     "%s", "?");
 809                         }
 810                         mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
 811                             lkb->lkb_dups + 1, lkb->lkb_addr, c);
 812                 } else {
 813                         mdb_arg_t v;
 814 
 815                         if (lk_ttl == 1)
 816                                 mdb_printf("%s leak: 1 buffer, %ld bytes\n",
 817                                     cache.cache_name, lk_bytes);
 818                         else
 819                                 mdb_printf("%s leak: %d buffers, "
 820                                     "%ld bytes each, %ld bytes total\n",
 821                                     cache.cache_name, lk_ttl,
 822                                     cache.cache_bufsize, lk_bytes);
 823 
 824                         v.a_type = MDB_TYPE_STRING;
 825                         v.a_un.a_str = "-v";
 826 
 827                         if (mdb_call_dcmd("bufctl", lkb->lkb_addr,
 828                             DCMD_ADDRSPEC, 1, &v) == -1) {
 829                                 mdb_warn("'%p::bufctl -v' failed",
 830                                     lkb->lkb_addr);
 831                         }
 832                 }
 833                 return;
 834 
 835         default:
 836                 return;
 837         }
 838 }
 839 
 840 void
 841 leaky_subr_dump_end(int type)
 842 {
 843         int i;
 844         int width;
 845         const char *leaks;
 846 
 847         switch (type) {
 848         case TYPE_VMEM:
 849                 if (!lk_vmem_seen)
 850                         return;
 851 
 852                 width = 16;
 853                 leaks = "kmem_oversize leak";
 854                 break;
 855 
 856         case TYPE_CACHE:
 857                 if (!lk_cache_seen)
 858                         return;
 859 
 860                 width = sizeof (uintptr_t) * 2;
 861                 leaks = "buffer";
 862                 break;
 863 
 864         case TYPE_KMEM:
 865                 if (!lk_kmem_seen)
 866                         return;
 867 
 868                 width = sizeof (uintptr_t) * 2;
 869                 leaks = "buffer";
 870                 break;
 871 
 872         default:
 873                 return;
 874         }
 875 
 876         for (i = 0; i < 72; i++)
 877                 mdb_printf("-");
 878         mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n",
 879             width, "Total", lk_ttl, leaks, (lk_ttl == 1) ? "" : "s",
 880             lk_bytes, (lk_bytes == 1) ? "" : "s");
 881 }
 882 
 883 int
 884 leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb,
 885     void *cbdata)
 886 {
 887         kmem_bufctl_audit_t bc;
 888         vmem_seg_t vs;
 889 
 890         switch (lkb->lkb_type) {
 891         case TYPE_VMEM:
 892                 if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) {
 893                         mdb_warn("unable to read vmem_seg at %p",
 894                             lkb->lkb_addr);
 895                         return (WALK_NEXT);
 896                 }
 897                 return (cb(lkb->lkb_addr, &vs, cbdata));
 898 
 899         case TYPE_CACHE:
 900                 return (cb(lkb->lkb_addr, NULL, cbdata));
 901 
 902         case TYPE_KMEM:
 903                 if (mdb_vread(&bc, sizeof (bc), lkb->lkb_addr) == -1) {
 904                         mdb_warn("unable to read bufctl at %p",
 905                             lkb->lkb_addr);
 906                         return (WALK_NEXT);
 907                 }
 908                 return (cb(lkb->lkb_addr, &bc, cbdata));
 909         default:
 910                 return (WALK_NEXT);
 911         }
 912 }