1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
  27 /* All Rights Reserved */
  28 
  29 /*
  30  * Portions of this source code were derived from Berkeley 4.3 BSD
  31  * under license from the Regents of the University of California.
  32  */
  33 
  34 /*
  35  * VM - segment for non-faulting loads.
  36  */
  37 
  38 #include <sys/types.h>
  39 #include <sys/t_lock.h>
  40 #include <sys/param.h>
  41 #include <sys/mman.h>
  42 #include <sys/errno.h>
  43 #include <sys/kmem.h>
  44 #include <sys/cmn_err.h>
  45 #include <sys/vnode.h>
  46 #include <sys/proc.h>
  47 #include <sys/conf.h>
  48 #include <sys/debug.h>
  49 #include <sys/archsystm.h>
  50 #include <sys/lgrp.h>
  51 
  52 #include <vm/page.h>
  53 #include <vm/hat.h>
  54 #include <vm/as.h>
  55 #include <vm/seg.h>
  56 #include <vm/vpage.h>
  57 
  58 /*
  59  * Private seg op routines.
  60  */
  61 static int      segnf_dup(struct seg *seg, struct seg *newseg);
  62 static int      segnf_unmap(struct seg *seg, caddr_t addr, size_t len);
  63 static void     segnf_free(struct seg *seg);
  64 static faultcode_t segnf_nomap(void);
  65 static int      segnf_setprot(struct seg *seg, caddr_t addr,
  66                     size_t len, uint_t prot);
  67 static int      segnf_checkprot(struct seg *seg, caddr_t addr,
  68                     size_t len, uint_t prot);
  69 static int      segnf_nop(void);
  70 static int      segnf_getprot(struct seg *seg, caddr_t addr,
  71                     size_t len, uint_t *protv);
  72 static u_offset_t segnf_getoffset(struct seg *seg, caddr_t addr);
  73 static int      segnf_gettype(struct seg *seg, caddr_t addr);
  74 static int      segnf_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
  75 static int      segnf_pagelock(struct seg *seg, caddr_t addr, size_t len,
  76                     struct page ***ppp, enum lock_type type, enum seg_rw rw);
  77 
  78 
  79 const struct seg_ops segnf_ops = {
  80         .dup            = segnf_dup,
  81         .unmap          = segnf_unmap,
  82         .free           = segnf_free,
  83         .fault          = (faultcode_t (*)(struct hat *, struct seg *, caddr_t,
  84             size_t, enum fault_type, enum seg_rw))segnf_nomap,
  85         .faulta         = (faultcode_t (*)(struct seg *, caddr_t)) segnf_nomap,
  86         .setprot        = segnf_setprot,
  87         .checkprot      = segnf_checkprot,
  88         .sync           = (int (*)(struct seg *, caddr_t, size_t, int, uint_t))
  89                 segnf_nop,
  90         .incore         = (size_t (*)(struct seg *, caddr_t, size_t, char *))
  91                 segnf_nop,
  92         .lockop         = (int (*)(struct seg *, caddr_t, size_t, int, int,
  93             ulong_t *, size_t))segnf_nop,
  94         .getprot        = segnf_getprot,
  95         .getoffset      = segnf_getoffset,
  96         .gettype        = segnf_gettype,
  97         .getvp          = segnf_getvp,
  98         .advise         = (int (*)(struct seg *, caddr_t, size_t, uint_t))
  99                 segnf_nop,
 100         .pagelock       = segnf_pagelock,
 101 };
 102 
 103 /*
 104  * vnode and page for the page of zeros we use for the nf mappings.
 105  */
 106 static kmutex_t segnf_lock;
 107 static struct vnode nfvp;
 108 static struct page **nfpp;
 109 
 110 #define addr_to_vcolor(addr)                                            \
 111         (shm_alignment) ?                                               \
 112         ((int)(((uintptr_t)(addr) & (shm_alignment - 1)) >> PAGESHIFT)) : 0
 113 
 114 /*
 115  * We try to limit the number of Non-fault segments created.
 116  * Non fault segments are created to optimize sparc V9 code which uses
 117  * the sparc nonfaulting load ASI (ASI_PRIMARY_NOFAULT).
 118  *
 119  * There are several reasons why creating too many non-fault segments
 120  * could cause problems.
 121  *
 122  *      First, excessive allocation of kernel resources for the seg
 123  *      structures and the HAT data to map the zero pages.
 124  *
 125  *      Secondly, creating nofault segments actually uses up user virtual
 126  *      address space. This makes it unavailable for subsequent mmap(0, ...)
 127  *      calls which use as_gap() to find empty va regions.  Creation of too
 128  *      many nofault segments could thus interfere with the ability of the
 129  *      runtime linker to load a shared object.
 130  */
 131 #define MAXSEGFORNF     (10000)
 132 #define MAXNFSEARCH     (5)
 133 
 134 
 135 /*
 136  * Must be called from startup()
 137  */
 138 void
 139 segnf_init()
 140 {
 141         mutex_init(&segnf_lock, NULL, MUTEX_DEFAULT, NULL);
 142 }
 143 
 144 
 145 /*
 146  * Create a no-fault segment.
 147  *
 148  * The no-fault segment is not technically necessary, as the code in
 149  * nfload() in trap.c will emulate the SPARC instruction and load
 150  * a value of zero in the destination register.
 151  *
 152  * However, this code tries to put a page of zero's at the nofault address
 153  * so that subsequent non-faulting loads to the same page will not
 154  * trap with a tlb miss.
 155  *
 156  * In order to help limit the number of segments we merge adjacent nofault
 157  * segments into a single segment.  If we get a large number of segments
 158  * we'll also try to delete a random other nf segment.
 159  */
 160 /* ARGSUSED */
 161 int
 162 segnf_create(struct seg *seg, void *argsp)
 163 {
 164         uint_t prot;
 165         pgcnt_t vacpgs;
 166         u_offset_t off = 0;
 167         caddr_t vaddr = NULL;
 168         int i, color;
 169         struct seg *s1;
 170         struct seg *s2;
 171         size_t size;
 172         struct as *as = seg->s_as;
 173 
 174         ASSERT(as && AS_WRITE_HELD(as, &as->a_lock));
 175 
 176         /*
 177          * Need a page per virtual color or just 1 if no vac.
 178          */
 179         mutex_enter(&segnf_lock);
 180         if (nfpp == NULL) {
 181                 struct seg kseg;
 182 
 183                 vacpgs = 1;
 184                 if (shm_alignment > PAGESIZE) {
 185                         vacpgs = shm_alignment >> PAGESHIFT;
 186                 }
 187 
 188                 nfpp = kmem_alloc(sizeof (*nfpp) * vacpgs, KM_SLEEP);
 189 
 190                 kseg.s_as = &kas;
 191                 for (i = 0; i < vacpgs; i++, off += PAGESIZE,
 192                     vaddr += PAGESIZE) {
 193                         nfpp[i] = page_create_va(&nfvp, off, PAGESIZE,
 194                             PG_WAIT | PG_NORELOC, &kseg, vaddr);
 195                         page_io_unlock(nfpp[i]);
 196                         page_downgrade(nfpp[i]);
 197                         pagezero(nfpp[i], 0, PAGESIZE);
 198                 }
 199         }
 200         mutex_exit(&segnf_lock);
 201 
 202         hat_map(as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
 203 
 204         /*
 205          * s_data can't be NULL because of ASSERTS in the common vm code.
 206          */
 207         seg->s_ops = &segnf_ops;
 208         seg->s_data = seg;
 209         seg->s_flags |= S_PURGE;
 210 
 211         mutex_enter(&as->a_contents);
 212         as->a_flags |= AS_NEEDSPURGE;
 213         mutex_exit(&as->a_contents);
 214 
 215         prot = PROT_READ;
 216         color = addr_to_vcolor(seg->s_base);
 217         if (as != &kas)
 218                 prot |= PROT_USER;
 219         hat_memload(as->a_hat, seg->s_base, nfpp[color],
 220             prot | HAT_NOFAULT, HAT_LOAD);
 221 
 222         /*
 223          * At this point see if we can concatenate a segment to
 224          * a non-fault segment immediately before and/or after it.
 225          */
 226         if ((s1 = AS_SEGPREV(as, seg)) != NULL &&
 227             s1->s_ops == &segnf_ops &&
 228             s1->s_base + s1->s_size == seg->s_base) {
 229                 size = s1->s_size;
 230                 seg_free(s1);
 231                 seg->s_base -= size;
 232                 seg->s_size += size;
 233         }
 234 
 235         if ((s2 = AS_SEGNEXT(as, seg)) != NULL &&
 236             s2->s_ops == &segnf_ops &&
 237             seg->s_base + seg->s_size == s2->s_base) {
 238                 size = s2->s_size;
 239                 seg_free(s2);
 240                 seg->s_size += size;
 241         }
 242 
 243         /*
 244          * if we already have a lot of segments, try to delete some other
 245          * nofault segment to reduce the probability of uncontrolled segment
 246          * creation.
 247          *
 248          * the code looks around quickly (no more than MAXNFSEARCH segments
 249          * each way) for another NF segment and then deletes it.
 250          */
 251         if (avl_numnodes(&as->a_segtree) > MAXSEGFORNF) {
 252                 size = 0;
 253                 s2 = NULL;
 254                 s1 = AS_SEGPREV(as, seg);
 255                 while (size++ < MAXNFSEARCH && s1 != NULL) {
 256                         if (s1->s_ops == &segnf_ops)
 257                                 s2 = s1;
 258                         s1 = AS_SEGPREV(s1->s_as, seg);
 259                 }
 260                 if (s2 == NULL) {
 261                         s1 = AS_SEGNEXT(as, seg);
 262                         while (size-- > 0 && s1 != NULL) {
 263                                 if (s1->s_ops == &segnf_ops)
 264                                         s2 = s1;
 265                                 s1 = AS_SEGNEXT(as, seg);
 266                         }
 267                 }
 268                 if (s2 != NULL)
 269                         seg_unmap(s2);
 270         }
 271 
 272         return (0);
 273 }
 274 
 275 /*
 276  * Never really need "No fault" segments, so they aren't dup'd.
 277  */
 278 /* ARGSUSED */
 279 static int
 280 segnf_dup(struct seg *seg, struct seg *newseg)
 281 {
 282         panic("segnf_dup");
 283         return (0);
 284 }
 285 
 286 /*
 287  * Split a segment at addr for length len.
 288  */
 289 static int
 290 segnf_unmap(struct seg *seg, caddr_t addr, size_t len)
 291 {
 292         ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
 293 
 294         /*
 295          * Check for bad sizes.
 296          */
 297         if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
 298             (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
 299                 cmn_err(CE_PANIC, "segnf_unmap: bad unmap size");
 300         }
 301 
 302         /*
 303          * Unload any hardware translations in the range to be taken out.
 304          */
 305         hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD_UNMAP);
 306 
 307         if (addr == seg->s_base && len == seg->s_size) {
 308                 /*
 309                  * Freeing entire segment.
 310                  */
 311                 seg_free(seg);
 312         } else if (addr == seg->s_base) {
 313                 /*
 314                  * Freeing the beginning of the segment.
 315                  */
 316                 seg->s_base += len;
 317                 seg->s_size -= len;
 318         } else if (addr + len == seg->s_base + seg->s_size) {
 319                 /*
 320                  * Freeing the end of the segment.
 321                  */
 322                 seg->s_size -= len;
 323         } else {
 324                 /*
 325                  * The section to go is in the middle of the segment, so we
 326                  * have to cut it into two segments.  We shrink the existing
 327                  * "seg" at the low end, and create "nseg" for the high end.
 328                  */
 329                 caddr_t nbase = addr + len;
 330                 size_t nsize = (seg->s_base + seg->s_size) - nbase;
 331                 struct seg *nseg;
 332 
 333                 /*
 334                  * Trim down "seg" before trying to stick "nseg" into the as.
 335                  */
 336                 seg->s_size = addr - seg->s_base;
 337                 nseg = seg_alloc(seg->s_as, nbase, nsize);
 338                 if (nseg == NULL)
 339                         cmn_err(CE_PANIC, "segnf_unmap: seg_alloc failed");
 340 
 341                 /*
 342                  * s_data can't be NULL because of ASSERTs in common VM code.
 343                  */
 344                 nseg->s_ops = seg->s_ops;
 345                 nseg->s_data = nseg;
 346                 nseg->s_flags |= S_PURGE;
 347                 mutex_enter(&seg->s_as->a_contents);
 348                 seg->s_as->a_flags |= AS_NEEDSPURGE;
 349                 mutex_exit(&seg->s_as->a_contents);
 350         }
 351 
 352         return (0);
 353 }
 354 
 355 /*
 356  * Free a segment.
 357  */
 358 static void
 359 segnf_free(struct seg *seg)
 360 {
 361         ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
 362 }
 363 
 364 /*
 365  * No faults allowed on segnf.
 366  */
 367 static faultcode_t
 368 segnf_nomap(void)
 369 {
 370         return (FC_NOMAP);
 371 }
 372 
 373 /* ARGSUSED */
 374 static int
 375 segnf_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
 376 {
 377         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
 378         return (EACCES);
 379 }
 380 
 381 /* ARGSUSED */
 382 static int
 383 segnf_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
 384 {
 385         uint_t sprot;
 386         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
 387 
 388         sprot = seg->s_as == &kas ?  PROT_READ : PROT_READ|PROT_USER;
 389         return ((prot & sprot) == prot ? 0 : EACCES);
 390 }
 391 
 392 static int
 393 segnf_nop(void)
 394 {
 395         return (0);
 396 }
 397 
 398 static int
 399 segnf_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
 400 {
 401         size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
 402         size_t p;
 403         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
 404 
 405         for (p = 0; p < pgno; ++p)
 406                 protv[p] = PROT_READ;
 407         return (0);
 408 }
 409 
 410 /* ARGSUSED */
 411 static u_offset_t
 412 segnf_getoffset(struct seg *seg, caddr_t addr)
 413 {
 414         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
 415 
 416         return ((u_offset_t)0);
 417 }
 418 
 419 /* ARGSUSED */
 420 static int
 421 segnf_gettype(struct seg *seg, caddr_t addr)
 422 {
 423         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
 424 
 425         return (MAP_SHARED);
 426 }
 427 
 428 /* ARGSUSED */
 429 static int
 430 segnf_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
 431 {
 432         ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
 433 
 434         *vpp = &nfvp;
 435         return (0);
 436 }
 437 
 438 /*ARGSUSED*/
 439 static int
 440 segnf_pagelock(struct seg *seg, caddr_t addr, size_t len,
 441     struct page ***ppp, enum lock_type type, enum seg_rw rw)
 442 {
 443         return (ENOTSUP);
 444 }