1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include <sys/types.h>
  26 #include <sys/t_lock.h>
  27 #include <sys/param.h>
  28 #include <sys/sysmacros.h>
  29 #include <sys/tuneable.h>
  30 #include <sys/systm.h>
  31 #include <sys/vm.h>
  32 #include <sys/kmem.h>
  33 #include <sys/vmem.h>
  34 #include <sys/mman.h>
  35 #include <sys/cmn_err.h>
  36 #include <sys/debug.h>
  37 #include <sys/dumphdr.h>
  38 #include <sys/bootconf.h>
  39 #include <sys/lgrp.h>
  40 #include <vm/seg_kmem.h>
  41 #include <vm/hat.h>
  42 #include <vm/page.h>
  43 #include <vm/vm_dep.h>
  44 #include <vm/faultcode.h>
  45 #include <sys/promif.h>
  46 #include <vm/seg_kp.h>
  47 #include <sys/bitmap.h>
  48 #include <sys/mem_cage.h>
  49 
  50 #ifdef __sparc
  51 #include <sys/ivintr.h>
  52 #include <sys/panic.h>
  53 #endif
  54 
  55 /*
  56  * seg_kmem is the primary kernel memory segment driver.  It
  57  * maps the kernel heap [kernelheap, ekernelheap), module text,
  58  * and all memory which was allocated before the VM was initialized
  59  * into kas.
  60  *
  61  * Pages which belong to seg_kmem are hashed into &kvp vnode at
  62  * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1.
  63  * They must never be paged out since segkmem_fault() is a no-op to
  64  * prevent recursive faults.
  65  *
  66  * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on
  67  * __x86 and are unlocked (p_sharelock == 0) on __sparc.  Once __x86
  68  * supports relocation the #ifdef kludges can be removed.
  69  *
  70  * seg_kmem pages may be subject to relocation by page_relocate(),
  71  * provided that the HAT supports it; if this is so, segkmem_reloc
  72  * will be set to a nonzero value. All boot time allocated memory as
  73  * well as static memory is considered off limits to relocation.
  74  * Pages are "relocatable" if p_state does not have P_NORELOC set, so
  75  * we request P_NORELOC pages for memory that isn't safe to relocate.
  76  *
  77  * The kernel heap is logically divided up into four pieces:
  78  *
  79  *   heap32_arena is for allocations that require 32-bit absolute
  80  *   virtual addresses (e.g. code that uses 32-bit pointers/offsets).
  81  *
  82  *   heap_core is for allocations that require 2GB *relative*
  83  *   offsets; in other words all memory from heap_core is within
  84  *   2GB of all other memory from the same arena. This is a requirement
  85  *   of the addressing modes of some processors in supervisor code.
  86  *
  87  *   heap_arena is the general heap arena.
  88  *
  89  *   static_arena is the static memory arena.  Allocations from it
  90  *   are not subject to relocation so it is safe to use the memory
  91  *   physical address as well as the virtual address (e.g. the VA to
  92  *   PA translations are static).  Caches may import from static_arena;
  93  *   all other static memory allocations should use static_alloc_arena.
  94  *
  95  * On some platforms which have limited virtual address space, seg_kmem
  96  * may share [kernelheap, ekernelheap) with seg_kp; if this is so,
  97  * segkp_bitmap is non-NULL, and each bit represents a page of virtual
  98  * address space which is actually seg_kp mapped.
  99  */
 100 
 101 extern ulong_t *segkp_bitmap;   /* Is set if segkp is from the kernel heap */
 102 
 103 char *kernelheap;               /* start of primary kernel heap */
 104 char *ekernelheap;              /* end of primary kernel heap */
 105 struct seg kvseg;               /* primary kernel heap segment */
 106 struct seg kvseg_core;          /* "core" kernel heap segment */
 107 struct seg kzioseg;             /* Segment for zio mappings */
 108 vmem_t *heap_arena;             /* primary kernel heap arena */
 109 vmem_t *heap_core_arena;        /* core kernel heap arena */
 110 char *heap_core_base;           /* start of core kernel heap arena */
 111 char *heap_lp_base;             /* start of kernel large page heap arena */
 112 char *heap_lp_end;              /* end of kernel large page heap arena */
 113 vmem_t *hat_memload_arena;      /* HAT translation data */
 114 struct seg kvseg32;             /* 32-bit kernel heap segment */
 115 vmem_t *heap32_arena;           /* 32-bit kernel heap arena */
 116 vmem_t *heaptext_arena;         /* heaptext arena */
 117 struct as kas;                  /* kernel address space */
 118 int segkmem_reloc;              /* enable/disable relocatable segkmem pages */
 119 vmem_t *static_arena;           /* arena for caches to import static memory */
 120 vmem_t *static_alloc_arena;     /* arena for allocating static memory */
 121 vmem_t *zio_arena = NULL;       /* arena for allocating zio memory */
 122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */
 123 
 124 /*
 125  * seg_kmem driver can map part of the kernel heap with large pages.
 126  * Currently this functionality is implemented for sparc platforms only.
 127  *
 128  * The large page size "segkmem_lpsize" for kernel heap is selected in the
 129  * platform specific code. It can also be modified via /etc/system file.
 130  * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large
 131  * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to
 132  * match segkmem_lpsize.
 133  *
 134  * At boot time we carve from kernel heap arena a range of virtual addresses
 135  * that will be used for large page mappings. This range [heap_lp_base,
 136  * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also
 137  * create "kmem_lp_arena" that caches memory already backed up by large
 138  * pages. kmem_lp_arena imports virtual segments from heap_lp_arena.
 139  */
 140 
 141 size_t  segkmem_lpsize;
 142 static  uint_t  segkmem_lpshift = PAGESHIFT;
 143 int     segkmem_lpszc = 0;
 144 
 145 size_t  segkmem_kmemlp_quantum = 0x400000;      /* 4MB */
 146 size_t  segkmem_heaplp_quantum;
 147 vmem_t *heap_lp_arena;
 148 static  vmem_t *kmem_lp_arena;
 149 static  vmem_t *segkmem_ppa_arena;
 150 static  segkmem_lpcb_t segkmem_lpcb;
 151 
 152 /*
 153  * We use "segkmem_kmemlp_max" to limit the total amount of physical memory
 154  * consumed by the large page heap. By default this parameter is set to 1/8 of
 155  * physmem but can be adjusted through /etc/system either directly or
 156  * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem
 157  * we allow for large page heap.
 158  */
 159 size_t  segkmem_kmemlp_max;
 160 static  uint_t  segkmem_kmemlp_pcnt;
 161 
 162 /*
 163  * Getting large pages for kernel heap could be problematic due to
 164  * physical memory fragmentation. That's why we allow to preallocate
 165  * "segkmem_kmemlp_min" bytes at boot time.
 166  */
 167 static  size_t  segkmem_kmemlp_min;
 168 
 169 /*
 170  * Throttling is used to avoid expensive tries to allocate large pages
 171  * for kernel heap when a lot of succesive attempts to do so fail.
 172  */
 173 static  ulong_t segkmem_lpthrottle_max = 0x400000;
 174 static  ulong_t segkmem_lpthrottle_start = 0x40;
 175 static  ulong_t segkmem_use_lpthrottle = 1;
 176 
 177 /*
 178  * Freed pages accumulate on a garbage list until segkmem is ready,
 179  * at which point we call segkmem_gc() to free it all.
 180  */
 181 typedef struct segkmem_gc_list {
 182         struct segkmem_gc_list  *gc_next;
 183         vmem_t                  *gc_arena;
 184         size_t                  gc_size;
 185 } segkmem_gc_list_t;
 186 
 187 static segkmem_gc_list_t *segkmem_gc_list;
 188 
 189 /*
 190  * Allocations from the hat_memload arena add VM_MEMLOAD to their
 191  * vmflags so that segkmem_xalloc() can inform the hat layer that it needs
 192  * to take steps to prevent infinite recursion.  HAT allocations also
 193  * must be non-relocatable to prevent recursive page faults.
 194  */
 195 static void *
 196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags)
 197 {
 198         flags |= (VM_MEMLOAD | VM_NORELOC);
 199         return (segkmem_alloc(vmp, size, flags));
 200 }
 201 
 202 /*
 203  * Allocations from static_arena arena (or any other arena that uses
 204  * segkmem_alloc_permanent()) require non-relocatable (permanently
 205  * wired) memory pages, since these pages are referenced by physical
 206  * as well as virtual address.
 207  */
 208 void *
 209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags)
 210 {
 211         return (segkmem_alloc(vmp, size, flags | VM_NORELOC));
 212 }
 213 
 214 /*
 215  * Initialize kernel heap boundaries.
 216  */
 217 void
 218 kernelheap_init(
 219         void *heap_start,
 220         void *heap_end,
 221         char *first_avail,
 222         void *core_start,
 223         void *core_end)
 224 {
 225         uintptr_t textbase;
 226         size_t core_size;
 227         size_t heap_size;
 228         vmem_t *heaptext_parent;
 229         size_t  heap_lp_size = 0;
 230 #ifdef __sparc
 231         size_t kmem64_sz = kmem64_aligned_end - kmem64_base;
 232 #endif  /* __sparc */
 233 
 234         kernelheap = heap_start;
 235         ekernelheap = heap_end;
 236 
 237 #ifdef __sparc
 238         heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4);
 239         /*
 240          * Bias heap_lp start address by kmem64_sz to reduce collisions
 241          * in 4M kernel TSB between kmem64 area and heap_lp
 242          */
 243         kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M);
 244         if (kmem64_sz <= heap_lp_size / 2)
 245                 heap_lp_size -= kmem64_sz;
 246         heap_lp_base = ekernelheap - heap_lp_size;
 247         heap_lp_end = heap_lp_base + heap_lp_size;
 248 #endif  /* __sparc */
 249 
 250         /*
 251          * If this platform has a 'core' heap area, then the space for
 252          * overflow module text should be carved out of the end of that
 253          * heap.  Otherwise, it gets carved out of the general purpose
 254          * heap.
 255          */
 256         core_size = (uintptr_t)core_end - (uintptr_t)core_start;
 257         if (core_size > 0) {
 258                 ASSERT(core_size >= HEAPTEXT_SIZE);
 259                 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE;
 260                 core_size -= HEAPTEXT_SIZE;
 261         }
 262 #ifndef __sparc
 263         else {
 264                 ekernelheap -= HEAPTEXT_SIZE;
 265                 textbase = (uintptr_t)ekernelheap;
 266         }
 267 #endif
 268 
 269         heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap;
 270         heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE,
 271             segkmem_alloc, segkmem_free);
 272 
 273         if (core_size > 0) {
 274                 heap_core_arena = vmem_create("heap_core", core_start,
 275                     core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
 276                 heap_core_base = core_start;
 277         } else {
 278                 heap_core_arena = heap_arena;
 279                 heap_core_base = kernelheap;
 280         }
 281 
 282         /*
 283          * reserve space for the large page heap. If large pages for kernel
 284          * heap is enabled large page heap arean will be created later in the
 285          * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated
 286          * range will be returned back to the heap_arena.
 287          */
 288         if (heap_lp_size) {
 289                 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0,
 290                     heap_lp_base, heap_lp_end,
 291                     VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
 292         }
 293 
 294         /*
 295          * Remove the already-spoken-for memory range [kernelheap, first_avail).
 296          */
 297         (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE,
 298             0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
 299 
 300 #ifdef __sparc
 301         heap32_arena = vmem_create("heap32", (void *)SYSBASE32,
 302             SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL,
 303             NULL, NULL, 0, VM_SLEEP);
 304         /*
 305          * Prom claims the physical and virtual resources used by panicbuf
 306          * and inter_vec_table. So reserve space for panicbuf, intr_vec_table,
 307          * reserved interrupt vector data structures from 32-bit heap.
 308          */
 309         (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
 310             panicbuf, panicbuf + PANICBUFSIZE,
 311             VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
 312 
 313         (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
 314             intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
 315             VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
 316 
 317         textbase = SYSLIMIT32 - HEAPTEXT_SIZE;
 318         heaptext_parent = NULL;
 319 #else   /* __sparc */
 320         heap32_arena = heap_core_arena;
 321         heaptext_parent = heap_core_arena;
 322 #endif  /* __sparc */
 323 
 324         heaptext_arena = vmem_create("heaptext", (void *)textbase,
 325             HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP);
 326 
 327         /*
 328          * Create a set of arenas for memory with static translations
 329          * (e.g. VA -> PA translations cannot change).  Since using
 330          * kernel pages by physical address implies it isn't safe to
 331          * walk across page boundaries, the static_arena quantum must
 332          * be PAGESIZE.  Any kmem caches that require static memory
 333          * should source from static_arena, while direct allocations
 334          * should only use static_alloc_arena.
 335          */
 336         static_arena = vmem_create("static", NULL, 0, PAGESIZE,
 337             segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
 338         static_alloc_arena = vmem_create("static_alloc", NULL, 0,
 339             sizeof (uint64_t), vmem_alloc, vmem_free, static_arena,
 340             0, VM_SLEEP);
 341 
 342         /*
 343          * Create an arena for translation data (ptes, hmes, or hblks).
 344          * We need an arena for this because hat_memload() is essential
 345          * to vmem_populate() (see comments in common/os/vmem.c).
 346          *
 347          * Note: any kmem cache that allocates from hat_memload_arena
 348          * must be created as a KMC_NOHASH cache (i.e. no external slab
 349          * and bufctl structures to allocate) so that slab creation doesn't
 350          * require anything more than a single vmem_alloc().
 351          */
 352         hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE,
 353             hat_memload_alloc, segkmem_free, heap_arena, 0,
 354             VM_SLEEP | VMC_POPULATOR | VMC_DUMPSAFE);
 355 }
 356 
 357 void
 358 boot_mapin(caddr_t addr, size_t size)
 359 {
 360         caddr_t  eaddr;
 361         page_t  *pp;
 362         pfn_t    pfnum;
 363 
 364         if (page_resv(btop(size), KM_NOSLEEP) == 0)
 365                 panic("boot_mapin: page_resv failed");
 366 
 367         for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
 368                 pfnum = va_to_pfn(addr);
 369                 if (pfnum == PFN_INVALID)
 370                         continue;
 371                 if ((pp = page_numtopp_nolock(pfnum)) == NULL)
 372                         panic("boot_mapin(): No pp for pfnum = %lx", pfnum);
 373 
 374                 /*
 375                  * must break up any large pages that may have constituent
 376                  * pages being utilized for BOP_ALLOC()'s before calling
 377                  * page_numtopp().The locking code (ie. page_reclaim())
 378                  * can't handle them
 379                  */
 380                 if (pp->p_szc != 0)
 381                         page_boot_demote(pp);
 382 
 383                 pp = page_numtopp(pfnum, SE_EXCL);
 384                 if (pp == NULL || PP_ISFREE(pp))
 385                         panic("boot_alloc: pp is NULL or free");
 386 
 387                 /*
 388                  * If the cage is on but doesn't yet contain this page,
 389                  * mark it as non-relocatable.
 390                  */
 391                 if (kcage_on && !PP_ISNORELOC(pp)) {
 392                         PP_SETNORELOC(pp);
 393                         PLCNT_XFER_NORELOC(pp);
 394                 }
 395 
 396                 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL);
 397                 pp->p_lckcnt = 1;
 398 #if defined(__x86)
 399                 page_downgrade(pp);
 400 #else
 401                 page_unlock(pp);
 402 #endif
 403         }
 404 }
 405 
 406 /*
 407  * Get pages from boot and hash them into the kernel's vp.
 408  * Used after page structs have been allocated, but before segkmem is ready.
 409  */
 410 void *
 411 boot_alloc(void *inaddr, size_t size, uint_t align)
 412 {
 413         caddr_t addr = inaddr;
 414 
 415         if (bootops == NULL)
 416                 prom_panic("boot_alloc: attempt to allocate memory after "
 417                     "BOP_GONE");
 418 
 419         size = ptob(btopr(size));
 420 #ifdef __sparc
 421         if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr)
 422                 panic("boot_alloc: bop_alloc_chunk failed");
 423 #else
 424         if (BOP_ALLOC(bootops, addr, size, align) != addr)
 425                 panic("boot_alloc: BOP_ALLOC failed");
 426 #endif
 427         boot_mapin((caddr_t)addr, size);
 428         return (addr);
 429 }
 430 
 431 /*ARGSUSED*/
 432 static faultcode_t
 433 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size,
 434         enum fault_type type, enum seg_rw rw)
 435 {
 436         pgcnt_t npages;
 437         spgcnt_t pg;
 438         page_t *pp;
 439         struct vnode *vp = seg->s_data;
 440 
 441         ASSERT(RW_READ_HELD(&seg->s_as->a_lock));
 442 
 443         if (seg->s_as != &kas || size > seg->s_size ||
 444             addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
 445                 panic("segkmem_fault: bad args");
 446 
 447         /*
 448          * If it is one of segkp pages, call segkp_fault.
 449          */
 450         if (segkp_bitmap && seg == &kvseg &&
 451             BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
 452                 return (segop_fault(hat, segkp, addr, size, type, rw));
 453 
 454         if (rw != S_READ && rw != S_WRITE && rw != S_OTHER)
 455                 return (FC_NOSUPPORT);
 456 
 457         npages = btopr(size);
 458 
 459         switch (type) {
 460         case F_SOFTLOCK:        /* lock down already-loaded translations */
 461                 for (pg = 0; pg < npages; pg++) {
 462                         pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
 463                             SE_SHARED);
 464                         if (pp == NULL) {
 465                                 /*
 466                                  * Hmm, no page. Does a kernel mapping
 467                                  * exist for it?
 468                                  */
 469                                 if (!hat_probe(kas.a_hat, addr)) {
 470                                         addr -= PAGESIZE;
 471                                         while (--pg >= 0) {
 472                                                 pp = page_find(vp, (u_offset_t)
 473                                                     (uintptr_t)addr);
 474                                                 if (pp)
 475                                                         page_unlock(pp);
 476                                                 addr -= PAGESIZE;
 477                                         }
 478                                         return (FC_NOMAP);
 479                                 }
 480                         }
 481                         addr += PAGESIZE;
 482                 }
 483                 if (rw == S_OTHER)
 484                         hat_reserve(seg->s_as, addr, size);
 485                 return (0);
 486         case F_SOFTUNLOCK:
 487                 while (npages--) {
 488                         pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
 489                         if (pp)
 490                                 page_unlock(pp);
 491                         addr += PAGESIZE;
 492                 }
 493                 return (0);
 494         default:
 495                 return (FC_NOSUPPORT);
 496         }
 497         /*NOTREACHED*/
 498 }
 499 
 500 static int
 501 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
 502 {
 503         ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
 504 
 505         if (seg->s_as != &kas || size > seg->s_size ||
 506             addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
 507                 panic("segkmem_setprot: bad args");
 508 
 509         /*
 510          * If it is one of segkp pages, call segkp.
 511          */
 512         if (segkp_bitmap && seg == &kvseg &&
 513             BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
 514                 return (segop_setprot(segkp, addr, size, prot));
 515 
 516         if (prot == 0)
 517                 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD);
 518         else
 519                 hat_chgprot(kas.a_hat, addr, size, prot);
 520         return (0);
 521 }
 522 
 523 /*
 524  * This is a dummy segkmem function overloaded to call segkp
 525  * when segkp is under the heap.
 526  */
 527 /* ARGSUSED */
 528 static int
 529 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
 530 {
 531         ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
 532 
 533         if (seg->s_as != &kas)
 534                 panic("segkmem badop");
 535 
 536         /*
 537          * If it is one of segkp pages, call into segkp.
 538          */
 539         if (segkp_bitmap && seg == &kvseg &&
 540             BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
 541                 return (segop_checkprot(segkp, addr, size, prot));
 542 
 543         panic("segkmem badop");
 544         return (0);
 545 }
 546 
 547 /*
 548  * This is a dummy segkmem function overloaded to call segkp
 549  * when segkp is under the heap.
 550  */
 551 /* ARGSUSED */
 552 static int
 553 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
 554 {
 555         ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
 556 
 557         if (seg->s_as != &kas)
 558                 panic("segkmem badop");
 559 
 560         /*
 561          * If it is one of segkp pages, call into segkp.
 562          */
 563         if (segkp_bitmap && seg == &kvseg &&
 564             BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
 565                 return (segop_kluster(segkp, addr, delta));
 566 
 567         panic("segkmem badop");
 568         return (0);
 569 }
 570 
 571 static void
 572 segkmem_xdump_range(void *arg, void *start, size_t size)
 573 {
 574         struct as *as = arg;
 575         caddr_t addr = start;
 576         caddr_t addr_end = addr + size;
 577 
 578         while (addr < addr_end) {
 579                 pfn_t pfn = hat_getpfnum(kas.a_hat, addr);
 580                 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn))
 581                         dump_addpage(as, addr, pfn);
 582                 addr += PAGESIZE;
 583                 dump_timeleft = dump_timeout;
 584         }
 585 }
 586 
 587 static void
 588 segkmem_dump_range(void *arg, void *start, size_t size)
 589 {
 590         caddr_t addr = start;
 591         caddr_t addr_end = addr + size;
 592 
 593         /*
 594          * If we are about to start dumping the range of addresses we
 595          * carved out of the kernel heap for the large page heap walk
 596          * heap_lp_arena to find what segments are actually populated
 597          */
 598         if (SEGKMEM_USE_LARGEPAGES &&
 599             addr == heap_lp_base && addr_end == heap_lp_end &&
 600             vmem_size(heap_lp_arena, VMEM_ALLOC) < size) {
 601                 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT,
 602                     segkmem_xdump_range, arg);
 603         } else {
 604                 segkmem_xdump_range(arg, start, size);
 605         }
 606 }
 607 
 608 static void
 609 segkmem_dump(struct seg *seg)
 610 {
 611         /*
 612          * The kernel's heap_arena (represented by kvseg) is a very large
 613          * VA space, most of which is typically unused.  To speed up dumping
 614          * we use vmem_walk() to quickly find the pieces of heap_arena that
 615          * are actually in use.  We do the same for heap32_arena and
 616          * heap_core.
 617          *
 618          * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage()
 619          * may ultimately need to allocate memory.  Reentrant walks are
 620          * necessarily imperfect snapshots.  The kernel heap continues
 621          * to change during a live crash dump, for example.  For a normal
 622          * crash dump, however, we know that there won't be any other threads
 623          * messing with the heap.  Therefore, at worst, we may fail to dump
 624          * the pages that get allocated by the act of dumping; but we will
 625          * always dump every page that was allocated when the walk began.
 626          *
 627          * The other segkmem segments are dense (fully populated), so there's
 628          * no need to use this technique when dumping them.
 629          *
 630          * Note: when adding special dump handling for any new sparsely-
 631          * populated segments, be sure to add similar handling to the ::kgrep
 632          * code in mdb.
 633          */
 634         if (seg == &kvseg) {
 635                 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT,
 636                     segkmem_dump_range, seg->s_as);
 637 #ifndef __sparc
 638                 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
 639                     segkmem_dump_range, seg->s_as);
 640 #endif
 641         } else if (seg == &kvseg_core) {
 642                 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT,
 643                     segkmem_dump_range, seg->s_as);
 644         } else if (seg == &kvseg32) {
 645                 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT,
 646                     segkmem_dump_range, seg->s_as);
 647                 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
 648                     segkmem_dump_range, seg->s_as);
 649         } else if (seg == &kzioseg) {
 650                 /*
 651                  * We don't want to dump pages attached to kzioseg since they
 652                  * contain file data from ZFS.  If this page's segment is
 653                  * kzioseg return instead of writing it to the dump device.
 654                  */
 655                 return;
 656         } else {
 657                 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size);
 658         }
 659 }
 660 
 661 /*
 662  * lock/unlock kmem pages over a given range [addr, addr+len).
 663  * Returns a shadow list of pages in ppp. If there are holes
 664  * in the range (e.g. some of the kernel mappings do not have
 665  * underlying page_ts) returns ENOTSUP so that as_pagelock()
 666  * will handle the range via as_fault(F_SOFTLOCK).
 667  */
 668 /*ARGSUSED*/
 669 static int
 670 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len,
 671         page_t ***ppp, enum lock_type type, enum seg_rw rw)
 672 {
 673         page_t **pplist, *pp;
 674         pgcnt_t npages;
 675         spgcnt_t pg;
 676         size_t nb;
 677         struct vnode *vp = seg->s_data;
 678 
 679         ASSERT(ppp != NULL);
 680 
 681         /*
 682          * If it is one of segkp pages, call into segkp.
 683          */
 684         if (segkp_bitmap && seg == &kvseg &&
 685             BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
 686                 return (segop_pagelock(segkp, addr, len, ppp, type, rw));
 687 
 688         npages = btopr(len);
 689         nb = sizeof (page_t *) * npages;
 690 
 691         if (type == L_PAGEUNLOCK) {
 692                 pplist = *ppp;
 693                 ASSERT(pplist != NULL);
 694 
 695                 for (pg = 0; pg < npages; pg++) {
 696                         pp = pplist[pg];
 697                         page_unlock(pp);
 698                 }
 699                 kmem_free(pplist, nb);
 700                 return (0);
 701         }
 702 
 703         ASSERT(type == L_PAGELOCK);
 704 
 705         pplist = kmem_alloc(nb, KM_NOSLEEP);
 706         if (pplist == NULL) {
 707                 *ppp = NULL;
 708                 return (ENOTSUP);       /* take the slow path */
 709         }
 710 
 711         for (pg = 0; pg < npages; pg++) {
 712                 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED);
 713                 if (pp == NULL) {
 714                         while (--pg >= 0)
 715                                 page_unlock(pplist[pg]);
 716                         kmem_free(pplist, nb);
 717                         *ppp = NULL;
 718                         return (ENOTSUP);
 719                 }
 720                 pplist[pg] = pp;
 721                 addr += PAGESIZE;
 722         }
 723 
 724         *ppp = pplist;
 725         return (0);
 726 }
 727 
 728 /*
 729  * This is a dummy segkmem function overloaded to call segkp
 730  * when segkp is under the heap.
 731  */
 732 /* ARGSUSED */
 733 static int
 734 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
 735 {
 736         ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
 737 
 738         if (seg->s_as != &kas)
 739                 panic("segkmem badop");
 740 
 741         /*
 742          * If it is one of segkp pages, call into segkp.
 743          */
 744         if (segkp_bitmap && seg == &kvseg &&
 745             BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
 746                 return (segop_getmemid(segkp, addr, memidp));
 747 
 748         panic("segkmem badop");
 749         return (0);
 750 }
 751 
 752 /*ARGSUSED*/
 753 static lgrp_mem_policy_info_t *
 754 segkmem_getpolicy(struct seg *seg, caddr_t addr)
 755 {
 756         return (NULL);
 757 }
 758 
 759 /*ARGSUSED*/
 760 static int
 761 segkmem_capable(struct seg *seg, segcapability_t capability)
 762 {
 763         if (capability == S_CAPABILITY_NOMINFLT)
 764                 return (1);
 765         return (0);
 766 }
 767 
 768 static struct seg_ops segkmem_ops = {
 769         .fault          = segkmem_fault,
 770         .setprot        = segkmem_setprot,
 771         .checkprot      = segkmem_checkprot,
 772         .kluster        = segkmem_kluster,
 773         .dump           = segkmem_dump,
 774         .pagelock       = segkmem_pagelock,
 775         .getmemid       = segkmem_getmemid,
 776         .getpolicy      = segkmem_getpolicy,
 777         .capable        = segkmem_capable,
 778         .inherit        = seg_inherit_notsup,
 779 };
 780 
 781 int
 782 segkmem_zio_create(struct seg *seg)
 783 {
 784         ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
 785         seg->s_ops = &segkmem_ops;
 786         seg->s_data = &zvp;
 787         kas.a_size += seg->s_size;
 788         return (0);
 789 }
 790 
 791 int
 792 segkmem_create(struct seg *seg)
 793 {
 794         ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
 795         seg->s_ops = &segkmem_ops;
 796         seg->s_data = &kvp;
 797         kas.a_size += seg->s_size;
 798         return (0);
 799 }
 800 
 801 /*ARGSUSED*/
 802 page_t *
 803 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg)
 804 {
 805         struct seg kseg;
 806         int pgflags;
 807         struct vnode *vp = arg;
 808 
 809         if (vp == NULL)
 810                 vp = &kvp;
 811 
 812         kseg.s_as = &kas;
 813         pgflags = PG_EXCL;
 814 
 815         if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
 816                 pgflags |= PG_NORELOC;
 817         if ((vmflag & VM_NOSLEEP) == 0)
 818                 pgflags |= PG_WAIT;
 819         if (vmflag & VM_PANIC)
 820                 pgflags |= PG_PANIC;
 821         if (vmflag & VM_PUSHPAGE)
 822                 pgflags |= PG_PUSHPAGE;
 823         if (vmflag & VM_NORMALPRI) {
 824                 ASSERT(vmflag & VM_NOSLEEP);
 825                 pgflags |= PG_NORMALPRI;
 826         }
 827 
 828         return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size,
 829             pgflags, &kseg, addr));
 830 }
 831 
 832 /*
 833  * Allocate pages to back the virtual address range [addr, addr + size).
 834  * If addr is NULL, allocate the virtual address space as well.
 835  */
 836 void *
 837 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr,
 838         page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg)
 839 {
 840         page_t *ppl;
 841         caddr_t addr = inaddr;
 842         pgcnt_t npages = btopr(size);
 843         int allocflag;
 844 
 845         if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
 846                 return (NULL);
 847 
 848         ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
 849 
 850         if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
 851                 if (inaddr == NULL)
 852                         vmem_free(vmp, addr, size);
 853                 return (NULL);
 854         }
 855 
 856         ppl = page_create_func(addr, size, vmflag, pcarg);
 857         if (ppl == NULL) {
 858                 if (inaddr == NULL)
 859                         vmem_free(vmp, addr, size);
 860                 page_unresv(npages);
 861                 return (NULL);
 862         }
 863 
 864         /*
 865          * Under certain conditions, we need to let the HAT layer know
 866          * that it cannot safely allocate memory.  Allocations from
 867          * the hat_memload vmem arena always need this, to prevent
 868          * infinite recursion.
 869          *
 870          * In addition, the x86 hat cannot safely do memory
 871          * allocations while in vmem_populate(), because there
 872          * is no simple bound on its usage.
 873          */
 874         if (vmflag & VM_MEMLOAD)
 875                 allocflag = HAT_NO_KALLOC;
 876 #if defined(__x86)
 877         else if (vmem_is_populator())
 878                 allocflag = HAT_NO_KALLOC;
 879 #endif
 880         else
 881                 allocflag = 0;
 882 
 883         while (ppl != NULL) {
 884                 page_t *pp = ppl;
 885                 page_sub(&ppl, pp);
 886                 ASSERT(page_iolock_assert(pp));
 887                 ASSERT(PAGE_EXCL(pp));
 888                 page_io_unlock(pp);
 889                 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp,
 890                     (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
 891                     HAT_LOAD_LOCK | allocflag);
 892                 pp->p_lckcnt = 1;
 893 #if defined(__x86)
 894                 page_downgrade(pp);
 895 #else
 896                 if (vmflag & SEGKMEM_SHARELOCKED)
 897                         page_downgrade(pp);
 898                 else
 899                         page_unlock(pp);
 900 #endif
 901         }
 902 
 903         return (addr);
 904 }
 905 
 906 static void *
 907 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp)
 908 {
 909         void *addr;
 910         segkmem_gc_list_t *gcp, **prev_gcpp;
 911 
 912         ASSERT(vp != NULL);
 913 
 914         if (kvseg.s_base == NULL) {
 915 #ifndef __sparc
 916                 if (bootops->bsys_alloc == NULL)
 917                         halt("Memory allocation between bop_alloc() and "
 918                             "kmem_alloc().\n");
 919 #endif
 920 
 921                 /*
 922                  * There's not a lot of memory to go around during boot,
 923                  * so recycle it if we can.
 924                  */
 925                 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL;
 926                     prev_gcpp = &gcp->gc_next) {
 927                         if (gcp->gc_arena == vmp && gcp->gc_size == size) {
 928                                 *prev_gcpp = gcp->gc_next;
 929                                 return (gcp);
 930                         }
 931                 }
 932 
 933                 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC);
 934                 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr)
 935                         panic("segkmem_alloc: boot_alloc failed");
 936                 return (addr);
 937         }
 938         return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
 939             segkmem_page_create, vp));
 940 }
 941 
 942 void *
 943 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
 944 {
 945         return (segkmem_alloc_vn(vmp, size, vmflag, &kvp));
 946 }
 947 
 948 void *
 949 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag)
 950 {
 951         return (segkmem_alloc_vn(vmp, size, vmflag, &zvp));
 952 }
 953 
 954 /*
 955  * Any changes to this routine must also be carried over to
 956  * devmap_free_pages() in the seg_dev driver. This is because
 957  * we currently don't have a special kernel segment for non-paged
 958  * kernel memory that is exported by drivers to user space.
 959  */
 960 static void
 961 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp,
 962     void (*func)(page_t *))
 963 {
 964         page_t *pp;
 965         caddr_t addr = inaddr;
 966         caddr_t eaddr;
 967         pgcnt_t npages = btopr(size);
 968 
 969         ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
 970         ASSERT(vp != NULL);
 971 
 972         if (kvseg.s_base == NULL) {
 973                 segkmem_gc_list_t *gc = inaddr;
 974                 gc->gc_arena = vmp;
 975                 gc->gc_size = size;
 976                 gc->gc_next = segkmem_gc_list;
 977                 segkmem_gc_list = gc;
 978                 return;
 979         }
 980 
 981         hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
 982 
 983         for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
 984 #if defined(__x86)
 985                 pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
 986                 if (pp == NULL)
 987                         panic("segkmem_free: page not found");
 988                 if (!page_tryupgrade(pp)) {
 989                         /*
 990                          * Some other thread has a sharelock. Wait for
 991                          * it to drop the lock so we can free this page.
 992                          */
 993                         page_unlock(pp);
 994                         pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
 995                             SE_EXCL);
 996                 }
 997 #else
 998                 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
 999 #endif
1000                 if (pp == NULL)
1001                         panic("segkmem_free: page not found");
1002                 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */
1003                 pp->p_lckcnt = 0;
1004                 if (func)
1005                         func(pp);
1006                 else
1007                         page_destroy(pp, 0);
1008         }
1009         if (func == NULL)
1010                 page_unresv(npages);
1011 
1012         if (vmp != NULL)
1013                 vmem_free(vmp, inaddr, size);
1014 
1015 }
1016 
1017 void
1018 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *))
1019 {
1020         segkmem_free_vn(vmp, inaddr, size, &kvp, func);
1021 }
1022 
1023 void
1024 segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
1025 {
1026         segkmem_free_vn(vmp, inaddr, size, &kvp, NULL);
1027 }
1028 
1029 void
1030 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size)
1031 {
1032         segkmem_free_vn(vmp, inaddr, size, &zvp, NULL);
1033 }
1034 
1035 void
1036 segkmem_gc(void)
1037 {
1038         ASSERT(kvseg.s_base != NULL);
1039         while (segkmem_gc_list != NULL) {
1040                 segkmem_gc_list_t *gc = segkmem_gc_list;
1041                 segkmem_gc_list = gc->gc_next;
1042                 segkmem_free(gc->gc_arena, gc, gc->gc_size);
1043         }
1044 }
1045 
1046 /*
1047  * Legacy entry points from here to end of file.
1048  */
1049 void
1050 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot,
1051     pfn_t pfn, uint_t flags)
1052 {
1053         hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1054         hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot,
1055             flags | HAT_LOAD_LOCK);
1056 }
1057 
1058 void
1059 segkmem_mapout(struct seg *seg, void *addr, size_t size)
1060 {
1061         hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1062 }
1063 
1064 void *
1065 kmem_getpages(pgcnt_t npages, int kmflag)
1066 {
1067         return (kmem_alloc(ptob(npages), kmflag));
1068 }
1069 
1070 void
1071 kmem_freepages(void *addr, pgcnt_t npages)
1072 {
1073         kmem_free(addr, ptob(npages));
1074 }
1075 
1076 /*
1077  * segkmem_page_create_large() allocates a large page to be used for the kmem
1078  * caches. If kpr is enabled we ask for a relocatable page unless requested
1079  * otherwise. If kpr is disabled we have to ask for a non-reloc page
1080  */
1081 static page_t *
1082 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg)
1083 {
1084         int pgflags;
1085 
1086         pgflags = PG_EXCL;
1087 
1088         if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
1089                 pgflags |= PG_NORELOC;
1090         if (!(vmflag & VM_NOSLEEP))
1091                 pgflags |= PG_WAIT;
1092         if (vmflag & VM_PUSHPAGE)
1093                 pgflags |= PG_PUSHPAGE;
1094         if (vmflag & VM_NORMALPRI)
1095                 pgflags |= PG_NORMALPRI;
1096 
1097         return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1098             pgflags, &kvseg, addr, arg));
1099 }
1100 
1101 /*
1102  * Allocate a large page to back the virtual address range
1103  * [addr, addr + size).  If addr is NULL, allocate the virtual address
1104  * space as well.
1105  */
1106 static void *
1107 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1108     uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1109     void *pcarg)
1110 {
1111         caddr_t addr = inaddr, pa;
1112         size_t  lpsize = segkmem_lpsize;
1113         pgcnt_t npages = btopr(size);
1114         pgcnt_t nbpages = btop(lpsize);
1115         pgcnt_t nlpages = size >> segkmem_lpshift;
1116         size_t  ppasize = nbpages * sizeof (page_t *);
1117         page_t *pp, *rootpp, **ppa, *pplist = NULL;
1118         int i;
1119 
1120         vmflag |= VM_NOSLEEP;
1121 
1122         if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1123                 return (NULL);
1124         }
1125 
1126         /*
1127          * allocate an array we need for hat_memload_array.
1128          * we use a separate arena to avoid recursion.
1129          * we will not need this array when hat_memload_array learns pp++
1130          */
1131         if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) {
1132                 goto fail_array_alloc;
1133         }
1134 
1135         if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
1136                 goto fail_vmem_alloc;
1137 
1138         ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0);
1139 
1140         /* create all the pages */
1141         for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) {
1142                 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL)
1143                         goto fail_page_create;
1144                 page_list_concat(&pplist, &pp);
1145         }
1146 
1147         /* at this point we have all the resource to complete the request */
1148         while ((rootpp = pplist) != NULL) {
1149                 for (i = 0; i < nbpages; i++) {
1150                         ASSERT(pplist != NULL);
1151                         pp = pplist;
1152                         page_sub(&pplist, pp);
1153                         ASSERT(page_iolock_assert(pp));
1154                         page_io_unlock(pp);
1155                         ppa[i] = pp;
1156                 }
1157                 /*
1158                  * Load the locked entry. It's OK to preload the entry into the
1159                  * TSB since we now support large mappings in the kernel TSB.
1160                  */
1161                 hat_memload_array(kas.a_hat,
1162                     (caddr_t)(uintptr_t)rootpp->p_offset, lpsize,
1163                     ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
1164                     HAT_LOAD_LOCK);
1165 
1166                 for (--i; i >= 0; --i) {
1167                         ppa[i]->p_lckcnt = 1;
1168                         page_unlock(ppa[i]);
1169                 }
1170         }
1171 
1172         vmem_free(segkmem_ppa_arena, ppa, ppasize);
1173         return (addr);
1174 
1175 fail_page_create:
1176         while ((rootpp = pplist) != NULL) {
1177                 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) {
1178                         ASSERT(pp != NULL);
1179                         page_sub(&pplist, pp);
1180                         ASSERT(page_iolock_assert(pp));
1181                         page_io_unlock(pp);
1182                 }
1183                 page_destroy_pages(rootpp);
1184         }
1185 
1186         if (inaddr == NULL)
1187                 vmem_free(vmp, addr, size);
1188 
1189 fail_vmem_alloc:
1190         vmem_free(segkmem_ppa_arena, ppa, ppasize);
1191 
1192 fail_array_alloc:
1193         page_unresv(npages);
1194 
1195         return (NULL);
1196 }
1197 
1198 static void
1199 segkmem_free_one_lp(caddr_t addr, size_t size)
1200 {
1201         page_t          *pp, *rootpp = NULL;
1202         pgcnt_t         pgs_left = btopr(size);
1203 
1204         ASSERT(size == segkmem_lpsize);
1205 
1206         hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1207 
1208         for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) {
1209                 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1210                 if (pp == NULL)
1211                         panic("segkmem_free_one_lp: page not found");
1212                 ASSERT(PAGE_EXCL(pp));
1213                 pp->p_lckcnt = 0;
1214                 if (rootpp == NULL)
1215                         rootpp = pp;
1216         }
1217         ASSERT(rootpp != NULL);
1218         page_destroy_pages(rootpp);
1219 
1220         /* page_unresv() is done by the caller */
1221 }
1222 
1223 /*
1224  * This function is called to import new spans into the vmem arenas like
1225  * kmem_default_arena and kmem_oversize_arena. It first tries to import
1226  * spans from large page arena - kmem_lp_arena. In order to do this it might
1227  * have to "upgrade the requested size" to kmem_lp_arena quantum. If
1228  * it was not able to satisfy the upgraded request it then calls regular
1229  * segkmem_alloc() that satisfies the request by importing from "*vmp" arena
1230  */
1231 /*ARGSUSED*/
1232 void *
1233 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
1234 {
1235         size_t size;
1236         kthread_t *t = curthread;
1237         segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1238 
1239         ASSERT(sizep != NULL);
1240 
1241         size = *sizep;
1242 
1243         if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) &&
1244             !(vmflag & SEGKMEM_SHARELOCKED)) {
1245 
1246                 size_t kmemlp_qnt = segkmem_kmemlp_quantum;
1247                 size_t asize = P2ROUNDUP(size, kmemlp_qnt);
1248                 void  *addr = NULL;
1249                 ulong_t *lpthrtp = &lpcb->lp_throttle;
1250                 ulong_t lpthrt = *lpthrtp;
1251                 int     dowakeup = 0;
1252                 int     doalloc = 1;
1253 
1254                 ASSERT(kmem_lp_arena != NULL);
1255                 ASSERT(asize >= size);
1256 
1257                 if (lpthrt != 0) {
1258                         /* try to update the throttle value */
1259                         lpthrt = atomic_inc_ulong_nv(lpthrtp);
1260                         if (lpthrt >= segkmem_lpthrottle_max) {
1261                                 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt,
1262                                     segkmem_lpthrottle_max / 4);
1263                         }
1264 
1265                         /*
1266                          * when we get above throttle start do an exponential
1267                          * backoff at trying large pages and reaping
1268                          */
1269                         if (lpthrt > segkmem_lpthrottle_start &&
1270                             !ISP2(lpthrt)) {
1271                                 lpcb->allocs_throttled++;
1272                                 lpthrt--;
1273                                 if (ISP2(lpthrt))
1274                                         kmem_reap();
1275                                 return (segkmem_alloc(vmp, size, vmflag));
1276                         }
1277                 }
1278 
1279                 if (!(vmflag & VM_NOSLEEP) &&
1280                     segkmem_heaplp_quantum >= (8 * kmemlp_qnt) &&
1281                     vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt &&
1282                     asize < (segkmem_heaplp_quantum - kmemlp_qnt)) {
1283 
1284                         /*
1285                          * we are low on free memory in kmem_lp_arena
1286                          * we let only one guy to allocate heap_lp
1287                          * quantum size chunk that everybody is going to
1288                          * share
1289                          */
1290                         mutex_enter(&lpcb->lp_lock);
1291 
1292                         if (lpcb->lp_wait) {
1293 
1294                                 /* we are not the first one - wait */
1295                                 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock);
1296                                 if (vmem_size(kmem_lp_arena, VMEM_FREE) <
1297                                     kmemlp_qnt)  {
1298                                         doalloc = 0;
1299                                 }
1300                         } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <=
1301                             kmemlp_qnt) {
1302 
1303                                 /*
1304                                  * we are the first one, make sure we import
1305                                  * a large page
1306                                  */
1307                                 if (asize == kmemlp_qnt)
1308                                         asize += kmemlp_qnt;
1309                                 dowakeup = 1;
1310                                 lpcb->lp_wait = 1;
1311                         }
1312 
1313                         mutex_exit(&lpcb->lp_lock);
1314                 }
1315 
1316                 /*
1317                  * VM_ABORT flag prevents sleeps in vmem_xalloc when
1318                  * large pages are not available. In that case this allocation
1319                  * attempt will fail and we will retry allocation with small
1320                  * pages. We also do not want to panic if this allocation fails
1321                  * because we are going to retry.
1322                  */
1323                 if (doalloc) {
1324                         addr = vmem_alloc(kmem_lp_arena, asize,
1325                             (vmflag | VM_ABORT) & ~VM_PANIC);
1326 
1327                         if (dowakeup) {
1328                                 mutex_enter(&lpcb->lp_lock);
1329                                 ASSERT(lpcb->lp_wait != 0);
1330                                 lpcb->lp_wait = 0;
1331                                 cv_broadcast(&lpcb->lp_cv);
1332                                 mutex_exit(&lpcb->lp_lock);
1333                         }
1334                 }
1335 
1336                 if (addr != NULL) {
1337                         *sizep = asize;
1338                         *lpthrtp = 0;
1339                         return (addr);
1340                 }
1341 
1342                 if (vmflag & VM_NOSLEEP)
1343                         lpcb->nosleep_allocs_failed++;
1344                 else
1345                         lpcb->sleep_allocs_failed++;
1346                 lpcb->alloc_bytes_failed += size;
1347 
1348                 /* if large page throttling is not started yet do it */
1349                 if (segkmem_use_lpthrottle && lpthrt == 0) {
1350                         lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1);
1351                 }
1352         }
1353         return (segkmem_alloc(vmp, size, vmflag));
1354 }
1355 
1356 void
1357 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size)
1358 {
1359         if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) {
1360                 segkmem_free(vmp, inaddr, size);
1361         } else {
1362                 vmem_free(kmem_lp_arena, inaddr, size);
1363         }
1364 }
1365 
1366 /*
1367  * segkmem_alloc_lpi() imports virtual memory from large page heap arena
1368  * into kmem_lp arena. In the process it maps the imported segment with
1369  * large pages
1370  */
1371 static void *
1372 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag)
1373 {
1374         segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1375         void  *addr;
1376 
1377         ASSERT(size != 0);
1378         ASSERT(vmp == heap_lp_arena);
1379 
1380         /* do not allow large page heap grow beyound limits */
1381         if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) {
1382                 lpcb->allocs_limited++;
1383                 return (NULL);
1384         }
1385 
1386         addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0,
1387             segkmem_page_create_large, NULL);
1388         return (addr);
1389 }
1390 
1391 /*
1392  * segkmem_free_lpi() returns virtual memory back into large page heap arena
1393  * from kmem_lp arena. Beore doing this it unmaps the segment and frees
1394  * large pages used to map it.
1395  */
1396 static void
1397 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size)
1398 {
1399         pgcnt_t         nlpages = size >> segkmem_lpshift;
1400         size_t          lpsize = segkmem_lpsize;
1401         caddr_t         addr = inaddr;
1402         pgcnt_t         npages = btopr(size);
1403         int             i;
1404 
1405         ASSERT(vmp == heap_lp_arena);
1406         ASSERT(IS_KMEM_VA_LARGEPAGE(addr));
1407         ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0);
1408 
1409         for (i = 0; i < nlpages; i++) {
1410                 segkmem_free_one_lp(addr, lpsize);
1411                 addr += lpsize;
1412         }
1413 
1414         page_unresv(npages);
1415 
1416         vmem_free(vmp, inaddr, size);
1417 }
1418 
1419 /*
1420  * This function is called at system boot time by kmem_init right after
1421  * /etc/system file has been read. It checks based on hardware configuration
1422  * and /etc/system settings if system is going to use large pages. The
1423  * initialiazation necessary to actually start using large pages
1424  * happens later in the process after segkmem_heap_lp_init() is called.
1425  */
1426 int
1427 segkmem_lpsetup()
1428 {
1429         int use_large_pages = 0;
1430 
1431 #ifdef __sparc
1432 
1433         size_t memtotal = physmem * PAGESIZE;
1434 
1435         if (heap_lp_base == NULL) {
1436                 segkmem_lpsize = PAGESIZE;
1437                 return (0);
1438         }
1439 
1440         /* get a platform dependent value of large page size for kernel heap */
1441         segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize);
1442 
1443         if (segkmem_lpsize <= PAGESIZE) {
1444                 /*
1445                  * put virtual space reserved for the large page kernel
1446                  * back to the regular heap
1447                  */
1448                 vmem_xfree(heap_arena, heap_lp_base,
1449                     heap_lp_end - heap_lp_base);
1450                 heap_lp_base = NULL;
1451                 heap_lp_end = NULL;
1452                 segkmem_lpsize = PAGESIZE;
1453                 return (0);
1454         }
1455 
1456         /* set heap_lp quantum if necessary */
1457         if (segkmem_heaplp_quantum == 0 || !ISP2(segkmem_heaplp_quantum) ||
1458             P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) {
1459                 segkmem_heaplp_quantum = segkmem_lpsize;
1460         }
1461 
1462         /* set kmem_lp quantum if necessary */
1463         if (segkmem_kmemlp_quantum == 0 || !ISP2(segkmem_kmemlp_quantum) ||
1464             segkmem_kmemlp_quantum > segkmem_heaplp_quantum) {
1465                 segkmem_kmemlp_quantum = segkmem_heaplp_quantum;
1466         }
1467 
1468         /* set total amount of memory allowed for large page kernel heap */
1469         if (segkmem_kmemlp_max == 0) {
1470                 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100)
1471                         segkmem_kmemlp_pcnt = 12;
1472                 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100;
1473         }
1474         segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max,
1475             segkmem_heaplp_quantum);
1476 
1477         /* fix lp kmem preallocation request if necesssary */
1478         if (segkmem_kmemlp_min) {
1479                 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min,
1480                     segkmem_heaplp_quantum);
1481                 if (segkmem_kmemlp_min > segkmem_kmemlp_max)
1482                         segkmem_kmemlp_min = segkmem_kmemlp_max;
1483         }
1484 
1485         use_large_pages = 1;
1486         segkmem_lpszc = page_szc(segkmem_lpsize);
1487         segkmem_lpshift = page_get_shift(segkmem_lpszc);
1488 
1489 #endif
1490         return (use_large_pages);
1491 }
1492 
1493 void
1494 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size)
1495 {
1496         ASSERT(zio_mem_base != NULL);
1497         ASSERT(zio_mem_size != 0);
1498 
1499         /*
1500          * To reduce VA space fragmentation, we set up quantum caches for the
1501          * smaller sizes;  we chose 32k because that translates to 128k VA
1502          * slabs, which matches nicely with the common 128k zio_data bufs.
1503          */
1504         zio_arena = vmem_create("zfs_file_data", zio_mem_base, zio_mem_size,
1505             PAGESIZE, NULL, NULL, NULL, 32 * 1024, VM_SLEEP);
1506 
1507         zio_alloc_arena = vmem_create("zfs_file_data_buf", NULL, 0, PAGESIZE,
1508             segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP);
1509 
1510         ASSERT(zio_arena != NULL);
1511         ASSERT(zio_alloc_arena != NULL);
1512 }
1513 
1514 #ifdef __sparc
1515 
1516 
1517 static void *
1518 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag)
1519 {
1520         size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1521         void   *addr;
1522 
1523         if (ppaquantum <= PAGESIZE)
1524                 return (segkmem_alloc(vmp, size, vmflag));
1525 
1526         ASSERT((size & (ppaquantum - 1)) == 0);
1527 
1528         addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag);
1529         if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0,
1530             segkmem_page_create, NULL) == NULL) {
1531                 vmem_xfree(vmp, addr, size);
1532                 addr = NULL;
1533         }
1534 
1535         return (addr);
1536 }
1537 
1538 static void
1539 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size)
1540 {
1541         size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1542 
1543         ASSERT(addr != NULL);
1544 
1545         if (ppaquantum <= PAGESIZE) {
1546                 segkmem_free(vmp, addr, size);
1547         } else {
1548                 segkmem_free(NULL, addr, size);
1549                 vmem_xfree(vmp, addr, size);
1550         }
1551 }
1552 
1553 void
1554 segkmem_heap_lp_init()
1555 {
1556         segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1557         size_t heap_lp_size = heap_lp_end - heap_lp_base;
1558         size_t lpsize = segkmem_lpsize;
1559         size_t ppaquantum;
1560         void   *addr;
1561 
1562         if (segkmem_lpsize <= PAGESIZE) {
1563                 ASSERT(heap_lp_base == NULL);
1564                 ASSERT(heap_lp_end == NULL);
1565                 return;
1566         }
1567 
1568         ASSERT(segkmem_heaplp_quantum >= lpsize);
1569         ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0);
1570         ASSERT(lpcb->lp_uselp == 0);
1571         ASSERT(heap_lp_base != NULL);
1572         ASSERT(heap_lp_end != NULL);
1573         ASSERT(heap_lp_base < heap_lp_end);
1574         ASSERT(heap_lp_arena == NULL);
1575         ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0);
1576         ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0);
1577 
1578         /* create large page heap arena */
1579         heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size,
1580             segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP);
1581 
1582         ASSERT(heap_lp_arena != NULL);
1583 
1584         /* This arena caches memory already mapped by large pages */
1585         kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum,
1586             segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP);
1587 
1588         ASSERT(kmem_lp_arena != NULL);
1589 
1590         mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL);
1591         cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL);
1592 
1593         /*
1594          * this arena is used for the array of page_t pointers necessary
1595          * to call hat_mem_load_array
1596          */
1597         ppaquantum = btopr(lpsize) * sizeof (page_t *);
1598         segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum,
1599             segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum,
1600             VM_SLEEP);
1601 
1602         ASSERT(segkmem_ppa_arena != NULL);
1603 
1604         /* prealloacate some memory for the lp kernel heap */
1605         if (segkmem_kmemlp_min) {
1606 
1607                 ASSERT(P2PHASE(segkmem_kmemlp_min,
1608                     segkmem_heaplp_quantum) == 0);
1609 
1610                 if ((addr = segkmem_alloc_lpi(heap_lp_arena,
1611                     segkmem_kmemlp_min, VM_SLEEP)) != NULL) {
1612 
1613                         addr = vmem_add(kmem_lp_arena, addr,
1614                             segkmem_kmemlp_min, VM_SLEEP);
1615                         ASSERT(addr != NULL);
1616                 }
1617         }
1618 
1619         lpcb->lp_uselp = 1;
1620 }
1621 
1622 #endif