1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 /*
  25  * Copyright (c) 2010, Intel Corporation.
  26  * All rights reserved.
  27  */
  28 /*
  29  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  30  * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
  31  */
  32 
  33 /*
  34  * VM - Hardware Address Translation management for i386 and amd64
  35  *
  36  * Implementation of the interfaces described in <common/vm/hat.h>
  37  *
  38  * Nearly all the details of how the hardware is managed should not be
  39  * visible outside this layer except for misc. machine specific functions
  40  * that work in conjunction with this code.
  41  *
  42  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
  43  */
  44 
  45 #include <sys/machparam.h>
  46 #include <sys/machsystm.h>
  47 #include <sys/mman.h>
  48 #include <sys/types.h>
  49 #include <sys/systm.h>
  50 #include <sys/cpuvar.h>
  51 #include <sys/thread.h>
  52 #include <sys/proc.h>
  53 #include <sys/cpu.h>
  54 #include <sys/kmem.h>
  55 #include <sys/disp.h>
  56 #include <sys/shm.h>
  57 #include <sys/sysmacros.h>
  58 #include <sys/machparam.h>
  59 #include <sys/vmem.h>
  60 #include <sys/vmsystm.h>
  61 #include <sys/promif.h>
  62 #include <sys/var.h>
  63 #include <sys/x86_archext.h>
  64 #include <sys/atomic.h>
  65 #include <sys/bitmap.h>
  66 #include <sys/controlregs.h>
  67 #include <sys/bootconf.h>
  68 #include <sys/bootsvcs.h>
  69 #include <sys/bootinfo.h>
  70 #include <sys/archsystm.h>
  71 
  72 #include <vm/seg_kmem.h>
  73 #include <vm/hat_i86.h>
  74 #include <vm/as.h>
  75 #include <vm/seg.h>
  76 #include <vm/page.h>
  77 #include <vm/seg_kp.h>
  78 #include <vm/seg_kpm.h>
  79 #include <vm/vm_dep.h>
  80 #ifdef __xpv
  81 #include <sys/hypervisor.h>
  82 #endif
  83 #include <vm/kboot_mmu.h>
  84 #include <vm/seg_spt.h>
  85 
  86 #include <sys/cmn_err.h>
  87 
  88 /*
  89  * Basic parameters for hat operation.
  90  */
  91 struct hat_mmu_info mmu;
  92 
  93 /*
  94  * The page that is the kernel's top level pagetable.
  95  *
  96  * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
  97  * on this 4K page for its top level page table. The remaining groups of
  98  * 4 entries are used for per processor copies of user VLP pagetables for
  99  * running threads.  See hat_switch() and reload_pae32() for details.
 100  *
 101  * vlp_page[0..3] - level==2 PTEs for kernel HAT
 102  * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
 103  * vlp_page[8..11]  - level==2 PTE for user thread on cpu 1
 104  * etc...
 105  */
 106 static x86pte_t *vlp_page;
 107 
 108 /*
 109  * forward declaration of internal utility routines
 110  */
 111 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
 112         x86pte_t new);
 113 
 114 /*
 115  * The kernel address space exists in all HATs. To implement this the
 116  * kernel reserves a fixed number of entries in the topmost level(s) of page
 117  * tables. The values are setup during startup and then copied to every user
 118  * hat created by hat_alloc(). This means that kernelbase must be:
 119  *
 120  *        4Meg aligned for 32 bit kernels
 121  *      512Gig aligned for x86_64 64 bit kernel
 122  *
 123  * The hat_kernel_range_ts describe what needs to be copied from kernel hat
 124  * to each user hat.
 125  */
 126 typedef struct hat_kernel_range {
 127         level_t         hkr_level;
 128         uintptr_t       hkr_start_va;
 129         uintptr_t       hkr_end_va;     /* zero means to end of memory */
 130 } hat_kernel_range_t;
 131 #define NUM_KERNEL_RANGE 2
 132 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
 133 static int num_kernel_ranges;
 134 
 135 uint_t use_boot_reserve = 1;    /* cleared after early boot process */
 136 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */
 137 
 138 /*
 139  * enable_1gpg: controls 1g page support for user applications.
 140  * By default, 1g pages are exported to user applications. enable_1gpg can
 141  * be set to 0 to not export.
 142  */
 143 int     enable_1gpg = 1;
 144 
 145 /*
 146  * AMD shanghai processors provide better management of 1gb ptes in its tlb.
 147  * By default, 1g page support will be disabled for pre-shanghai AMD
 148  * processors that don't have optimal tlb support for the 1g page size.
 149  * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
 150  * processors.
 151  */
 152 int     chk_optimal_1gtlb = 1;
 153 
 154 
 155 #ifdef DEBUG
 156 uint_t  map1gcnt;
 157 #endif
 158 
 159 
 160 /*
 161  * A cpuset for all cpus. This is used for kernel address cross calls, since
 162  * the kernel addresses apply to all cpus.
 163  */
 164 cpuset_t khat_cpuset;
 165 
 166 /*
 167  * management stuff for hat structures
 168  */
 169 kmutex_t        hat_list_lock;
 170 kcondvar_t      hat_list_cv;
 171 kmem_cache_t    *hat_cache;
 172 kmem_cache_t    *hat_hash_cache;
 173 kmem_cache_t    *vlp_hash_cache;
 174 
 175 /*
 176  * Simple statistics
 177  */
 178 struct hatstats hatstat;
 179 
 180 /*
 181  * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
 182  * correctly.  For such hypervisors we must set PT_USER for kernel
 183  * entries ourselves (normally the emulation would set PT_USER for
 184  * kernel entries and PT_USER|PT_GLOBAL for user entries).  pt_kern is
 185  * thus set appropriately.  Note that dboot/kbm is OK, as only the full
 186  * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
 187  * incorrect.
 188  */
 189 int pt_kern;
 190 
 191 /*
 192  * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
 193  */
 194 extern void atomic_orb(uchar_t *addr, uchar_t val);
 195 extern void atomic_andb(uchar_t *addr, uchar_t val);
 196 
 197 #ifndef __xpv
 198 extern pfn_t memseg_get_start(struct memseg *);
 199 #endif
 200 
 201 #define PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
 202 #define PP_ISMOD(pp)            PP_GETRM(pp, P_MOD)
 203 #define PP_ISREF(pp)            PP_GETRM(pp, P_REF)
 204 #define PP_ISRO(pp)             PP_GETRM(pp, P_RO)
 205 
 206 #define PP_SETRM(pp, rm)        atomic_orb(&(pp->p_nrm), rm)
 207 #define PP_SETMOD(pp)           PP_SETRM(pp, P_MOD)
 208 #define PP_SETREF(pp)           PP_SETRM(pp, P_REF)
 209 #define PP_SETRO(pp)            PP_SETRM(pp, P_RO)
 210 
 211 #define PP_CLRRM(pp, rm)        atomic_andb(&(pp->p_nrm), ~(rm))
 212 #define PP_CLRMOD(pp)           PP_CLRRM(pp, P_MOD)
 213 #define PP_CLRREF(pp)           PP_CLRRM(pp, P_REF)
 214 #define PP_CLRRO(pp)            PP_CLRRM(pp, P_RO)
 215 #define PP_CLRALL(pp)           PP_CLRRM(pp, P_MOD | P_REF | P_RO)
 216 
 217 /*
 218  * kmem cache constructor for struct hat
 219  */
 220 /*ARGSUSED*/
 221 static int
 222 hati_constructor(void *buf, void *handle, int kmflags)
 223 {
 224         hat_t   *hat = buf;
 225 
 226         mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
 227         bzero(hat->hat_pages_mapped,
 228             sizeof (pgcnt_t) * (mmu.max_page_level + 1));
 229         hat->hat_ism_pgcnt = 0;
 230         hat->hat_stats = 0;
 231         hat->hat_flags = 0;
 232         CPUSET_ZERO(hat->hat_cpus);
 233         hat->hat_htable = NULL;
 234         hat->hat_ht_hash = NULL;
 235         return (0);
 236 }
 237 
 238 /*
 239  * Allocate a hat structure for as. We also create the top level
 240  * htable and initialize it to contain the kernel hat entries.
 241  */
 242 hat_t *
 243 hat_alloc(struct as *as)
 244 {
 245         hat_t                   *hat;
 246         htable_t                *ht;    /* top level htable */
 247         uint_t                  use_vlp;
 248         uint_t                  r;
 249         hat_kernel_range_t      *rp;
 250         uintptr_t               va;
 251         uintptr_t               eva;
 252         uint_t                  start;
 253         uint_t                  cnt;
 254         htable_t                *src;
 255 
 256         /*
 257          * Once we start creating user process HATs we can enable
 258          * the htable_steal() code.
 259          */
 260         if (can_steal_post_boot == 0)
 261                 can_steal_post_boot = 1;
 262 
 263         ASSERT(AS_WRITE_HELD(as, &as->a_lock));
 264         hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
 265         hat->hat_as = as;
 266         mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
 267         ASSERT(hat->hat_flags == 0);
 268 
 269 #if defined(__xpv)
 270         /*
 271          * No VLP stuff on the hypervisor due to the 64-bit split top level
 272          * page tables.  On 32-bit it's not needed as the hypervisor takes
 273          * care of copying the top level PTEs to a below 4Gig page.
 274          */
 275         use_vlp = 0;
 276 #else   /* __xpv */
 277         /* 32 bit processes uses a VLP style hat when running with PAE */
 278 #if defined(__amd64)
 279         use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
 280 #elif defined(__i386)
 281         use_vlp = mmu.pae_hat;
 282 #endif
 283 #endif  /* __xpv */
 284         if (use_vlp) {
 285                 hat->hat_flags = HAT_VLP;
 286                 bzero(hat->hat_vlp_ptes, VLP_SIZE);
 287         }
 288 
 289         /*
 290          * Allocate the htable hash
 291          */
 292         if ((hat->hat_flags & HAT_VLP)) {
 293                 hat->hat_num_hash = mmu.vlp_hash_cnt;
 294                 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
 295         } else {
 296                 hat->hat_num_hash = mmu.hash_cnt;
 297                 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
 298         }
 299         bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
 300 
 301         /*
 302          * Initialize Kernel HAT entries at the top of the top level page
 303          * tables for the new hat.
 304          */
 305         hat->hat_htable = NULL;
 306         hat->hat_ht_cached = NULL;
 307         XPV_DISALLOW_MIGRATE();
 308         ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
 309         hat->hat_htable = ht;
 310 
 311 #if defined(__amd64)
 312         if (hat->hat_flags & HAT_VLP)
 313                 goto init_done;
 314 #endif
 315 
 316         for (r = 0; r < num_kernel_ranges; ++r) {
 317                 rp = &kernel_ranges[r];
 318                 for (va = rp->hkr_start_va; va != rp->hkr_end_va;
 319                     va += cnt * LEVEL_SIZE(rp->hkr_level)) {
 320 
 321                         if (rp->hkr_level == TOP_LEVEL(hat))
 322                                 ht = hat->hat_htable;
 323                         else
 324                                 ht = htable_create(hat, va, rp->hkr_level,
 325                                     NULL);
 326 
 327                         start = htable_va2entry(va, ht);
 328                         cnt = HTABLE_NUM_PTES(ht) - start;
 329                         eva = va +
 330                             ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
 331                         if (rp->hkr_end_va != 0 &&
 332                             (eva > rp->hkr_end_va || eva == 0))
 333                                 cnt = htable_va2entry(rp->hkr_end_va, ht) -
 334                                     start;
 335 
 336 #if defined(__i386) && !defined(__xpv)
 337                         if (ht->ht_flags & HTABLE_VLP) {
 338                                 bcopy(&vlp_page[start],
 339                                     &hat->hat_vlp_ptes[start],
 340                                     cnt * sizeof (x86pte_t));
 341                                 continue;
 342                         }
 343 #endif
 344                         src = htable_lookup(kas.a_hat, va, rp->hkr_level);
 345                         ASSERT(src != NULL);
 346                         x86pte_copy(src, ht, start, cnt);
 347                         htable_release(src);
 348                 }
 349         }
 350 
 351 init_done:
 352 
 353 #if defined(__xpv)
 354         /*
 355          * Pin top level page tables after initializing them
 356          */
 357         xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
 358 #if defined(__amd64)
 359         xen_pin(hat->hat_user_ptable, mmu.max_level);
 360 #endif
 361 #endif
 362         XPV_ALLOW_MIGRATE();
 363 
 364         /*
 365          * Put it at the start of the global list of all hats (used by stealing)
 366          *
 367          * kas.a_hat is not in the list but is instead used to find the
 368          * first and last items in the list.
 369          *
 370          * - kas.a_hat->hat_next points to the start of the user hats.
 371          *   The list ends where hat->hat_next == NULL
 372          *
 373          * - kas.a_hat->hat_prev points to the last of the user hats.
 374          *   The list begins where hat->hat_prev == NULL
 375          */
 376         mutex_enter(&hat_list_lock);
 377         hat->hat_prev = NULL;
 378         hat->hat_next = kas.a_hat->hat_next;
 379         if (hat->hat_next)
 380                 hat->hat_next->hat_prev = hat;
 381         else
 382                 kas.a_hat->hat_prev = hat;
 383         kas.a_hat->hat_next = hat;
 384         mutex_exit(&hat_list_lock);
 385 
 386         return (hat);
 387 }
 388 
 389 /*
 390  * process has finished executing but as has not been cleaned up yet.
 391  */
 392 /*ARGSUSED*/
 393 void
 394 hat_free_start(hat_t *hat)
 395 {
 396         ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
 397 
 398         /*
 399          * If the hat is currently a stealing victim, wait for the stealing
 400          * to finish.  Once we mark it as HAT_FREEING, htable_steal()
 401          * won't look at its pagetables anymore.
 402          */
 403         mutex_enter(&hat_list_lock);
 404         while (hat->hat_flags & HAT_VICTIM)
 405                 cv_wait(&hat_list_cv, &hat_list_lock);
 406         hat->hat_flags |= HAT_FREEING;
 407         mutex_exit(&hat_list_lock);
 408 }
 409 
 410 /*
 411  * An address space is being destroyed, so we destroy the associated hat.
 412  */
 413 void
 414 hat_free_end(hat_t *hat)
 415 {
 416         kmem_cache_t *cache;
 417 
 418         ASSERT(hat->hat_flags & HAT_FREEING);
 419 
 420         /*
 421          * must not be running on the given hat
 422          */
 423         ASSERT(CPU->cpu_current_hat != hat);
 424 
 425         /*
 426          * Remove it from the list of HATs
 427          */
 428         mutex_enter(&hat_list_lock);
 429         if (hat->hat_prev)
 430                 hat->hat_prev->hat_next = hat->hat_next;
 431         else
 432                 kas.a_hat->hat_next = hat->hat_next;
 433         if (hat->hat_next)
 434                 hat->hat_next->hat_prev = hat->hat_prev;
 435         else
 436                 kas.a_hat->hat_prev = hat->hat_prev;
 437         mutex_exit(&hat_list_lock);
 438         hat->hat_next = hat->hat_prev = NULL;
 439 
 440 #if defined(__xpv)
 441         /*
 442          * On the hypervisor, unpin top level page table(s)
 443          */
 444         xen_unpin(hat->hat_htable->ht_pfn);
 445 #if defined(__amd64)
 446         xen_unpin(hat->hat_user_ptable);
 447 #endif
 448 #endif
 449 
 450         /*
 451          * Make a pass through the htables freeing them all up.
 452          */
 453         htable_purge_hat(hat);
 454 
 455         /*
 456          * Decide which kmem cache the hash table came from, then free it.
 457          */
 458         if (hat->hat_flags & HAT_VLP)
 459                 cache = vlp_hash_cache;
 460         else
 461                 cache = hat_hash_cache;
 462         kmem_cache_free(cache, hat->hat_ht_hash);
 463         hat->hat_ht_hash = NULL;
 464 
 465         hat->hat_flags = 0;
 466         kmem_cache_free(hat_cache, hat);
 467 }
 468 
 469 /*
 470  * round kernelbase down to a supported value to use for _userlimit
 471  *
 472  * userlimit must be aligned down to an entry in the top level htable.
 473  * The one exception is for 32 bit HAT's running PAE.
 474  */
 475 uintptr_t
 476 hat_kernelbase(uintptr_t va)
 477 {
 478 #if defined(__i386)
 479         va &= LEVEL_MASK(1);
 480 #endif
 481         if (IN_VA_HOLE(va))
 482                 panic("_userlimit %p will fall in VA hole\n", (void *)va);
 483         return (va);
 484 }
 485 
 486 /*
 487  *
 488  */
 489 static void
 490 set_max_page_level()
 491 {
 492         level_t lvl;
 493 
 494         if (!kbm_largepage_support) {
 495                 lvl = 0;
 496         } else {
 497                 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) {
 498                         lvl = 2;
 499                         if (chk_optimal_1gtlb &&
 500                             cpuid_opteron_erratum(CPU, 6671130)) {
 501                                 lvl = 1;
 502                         }
 503                         if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
 504                             LEVEL_SHIFT(0))) {
 505                                 lvl = 1;
 506                         }
 507                 } else {
 508                         lvl = 1;
 509                 }
 510         }
 511         mmu.max_page_level = lvl;
 512 
 513         if ((lvl == 2) && (enable_1gpg == 0))
 514                 mmu.umax_page_level = 1;
 515         else
 516                 mmu.umax_page_level = lvl;
 517 }
 518 
 519 /*
 520  * Initialize hat data structures based on processor MMU information.
 521  */
 522 void
 523 mmu_init(void)
 524 {
 525         uint_t max_htables;
 526         uint_t pa_bits;
 527         uint_t va_bits;
 528         int i;
 529 
 530         /*
 531          * If CPU enabled the page table global bit, use it for the kernel
 532          * This is bit 7 in CR4 (PGE - Page Global Enable).
 533          */
 534         if (is_x86_feature(x86_featureset, X86FSET_PGE) &&
 535             (getcr4() & CR4_PGE) != 0)
 536                 mmu.pt_global = PT_GLOBAL;
 537 
 538         /*
 539          * Detect NX and PAE usage.
 540          */
 541         mmu.pae_hat = kbm_pae_support;
 542         if (kbm_nx_support)
 543                 mmu.pt_nx = PT_NX;
 544         else
 545                 mmu.pt_nx = 0;
 546 
 547         /*
 548          * Use CPU info to set various MMU parameters
 549          */
 550         cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
 551 
 552         if (va_bits < sizeof (void *) * NBBY) {
 553                 mmu.hole_start = (1ul << (va_bits - 1));
 554                 mmu.hole_end = 0ul - mmu.hole_start - 1;
 555         } else {
 556                 mmu.hole_end = 0;
 557                 mmu.hole_start = mmu.hole_end - 1;
 558         }
 559 #if defined(OPTERON_ERRATUM_121)
 560         /*
 561          * If erratum 121 has already been detected at this time, hole_start
 562          * contains the value to be subtracted from mmu.hole_start.
 563          */
 564         ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
 565         hole_start = mmu.hole_start - hole_start;
 566 #else
 567         hole_start = mmu.hole_start;
 568 #endif
 569         hole_end = mmu.hole_end;
 570 
 571         mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
 572         if (mmu.pae_hat == 0 && pa_bits > 32)
 573                 mmu.highest_pfn = PFN_4G - 1;
 574 
 575         if (mmu.pae_hat) {
 576                 mmu.pte_size = 8;       /* 8 byte PTEs */
 577                 mmu.pte_size_shift = 3;
 578         } else {
 579                 mmu.pte_size = 4;       /* 4 byte PTEs */
 580                 mmu.pte_size_shift = 2;
 581         }
 582 
 583         if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE))
 584                 panic("Processor does not support PAE");
 585 
 586         if (!is_x86_feature(x86_featureset, X86FSET_CX8))
 587                 panic("Processor does not support cmpxchg8b instruction");
 588 
 589 #if defined(__amd64)
 590 
 591         mmu.num_level = 4;
 592         mmu.max_level = 3;
 593         mmu.ptes_per_table = 512;
 594         mmu.top_level_count = 512;
 595 
 596         mmu.level_shift[0] = 12;
 597         mmu.level_shift[1] = 21;
 598         mmu.level_shift[2] = 30;
 599         mmu.level_shift[3] = 39;
 600 
 601 #elif defined(__i386)
 602 
 603         if (mmu.pae_hat) {
 604                 mmu.num_level = 3;
 605                 mmu.max_level = 2;
 606                 mmu.ptes_per_table = 512;
 607                 mmu.top_level_count = 4;
 608 
 609                 mmu.level_shift[0] = 12;
 610                 mmu.level_shift[1] = 21;
 611                 mmu.level_shift[2] = 30;
 612 
 613         } else {
 614                 mmu.num_level = 2;
 615                 mmu.max_level = 1;
 616                 mmu.ptes_per_table = 1024;
 617                 mmu.top_level_count = 1024;
 618 
 619                 mmu.level_shift[0] = 12;
 620                 mmu.level_shift[1] = 22;
 621         }
 622 
 623 #endif  /* __i386 */
 624 
 625         for (i = 0; i < mmu.num_level; ++i) {
 626                 mmu.level_size[i] = 1UL << mmu.level_shift[i];
 627                 mmu.level_offset[i] = mmu.level_size[i] - 1;
 628                 mmu.level_mask[i] = ~mmu.level_offset[i];
 629         }
 630 
 631         set_max_page_level();
 632 
 633         mmu_page_sizes = mmu.max_page_level + 1;
 634         mmu_exported_page_sizes = mmu.umax_page_level + 1;
 635 
 636         /* restrict legacy applications from using pagesizes 1g and above */
 637         mmu_legacy_page_sizes =
 638             (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
 639 
 640 
 641         for (i = 0; i <= mmu.max_page_level; ++i) {
 642                 mmu.pte_bits[i] = PT_VALID | pt_kern;
 643                 if (i > 0)
 644                         mmu.pte_bits[i] |= PT_PAGESIZE;
 645         }
 646 
 647         /*
 648          * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
 649          */
 650         for (i = 1; i < mmu.num_level; ++i)
 651                 mmu.ptp_bits[i] = PT_PTPBITS;
 652 
 653 #if defined(__i386)
 654         mmu.ptp_bits[2] = PT_VALID;
 655 #endif
 656 
 657         /*
 658          * Compute how many hash table entries to have per process for htables.
 659          * We start with 1 page's worth of entries.
 660          *
 661          * If physical memory is small, reduce the amount need to cover it.
 662          */
 663         max_htables = physmax / mmu.ptes_per_table;
 664         mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
 665         while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
 666                 mmu.hash_cnt >>= 1;
 667         mmu.vlp_hash_cnt = mmu.hash_cnt;
 668 
 669 #if defined(__amd64)
 670         /*
 671          * If running in 64 bits and physical memory is large,
 672          * increase the size of the cache to cover all of memory for
 673          * a 64 bit process.
 674          */
 675 #define HASH_MAX_LENGTH 4
 676         while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
 677                 mmu.hash_cnt <<= 1;
 678 #endif
 679 }
 680 
 681 
 682 /*
 683  * initialize hat data structures
 684  */
 685 void
 686 hat_init()
 687 {
 688 #if defined(__i386)
 689         /*
 690          * _userlimit must be aligned correctly
 691          */
 692         if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
 693                 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
 694                     (void *)_userlimit, (void *)LEVEL_SIZE(1));
 695                 halt("hat_init(): Unable to continue");
 696         }
 697 #endif
 698 
 699         cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
 700 
 701         /*
 702          * initialize kmem caches
 703          */
 704         htable_init();
 705         hment_init();
 706 
 707         hat_cache = kmem_cache_create("hat_t",
 708             sizeof (hat_t), 0, hati_constructor, NULL, NULL,
 709             NULL, 0, 0);
 710 
 711         hat_hash_cache = kmem_cache_create("HatHash",
 712             mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
 713             NULL, 0, 0);
 714 
 715         /*
 716          * VLP hats can use a smaller hash table size on large memroy machines
 717          */
 718         if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
 719                 vlp_hash_cache = hat_hash_cache;
 720         } else {
 721                 vlp_hash_cache = kmem_cache_create("HatVlpHash",
 722                     mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
 723                     NULL, 0, 0);
 724         }
 725 
 726         /*
 727          * Set up the kernel's hat
 728          */
 729         AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
 730         kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
 731         mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
 732         kas.a_hat->hat_as = &kas;
 733         kas.a_hat->hat_flags = 0;
 734         AS_LOCK_EXIT(&kas, &kas.a_lock);
 735 
 736         CPUSET_ZERO(khat_cpuset);
 737         CPUSET_ADD(khat_cpuset, CPU->cpu_id);
 738 
 739         /*
 740          * The kernel hat's next pointer serves as the head of the hat list .
 741          * The kernel hat's prev pointer tracks the last hat on the list for
 742          * htable_steal() to use.
 743          */
 744         kas.a_hat->hat_next = NULL;
 745         kas.a_hat->hat_prev = NULL;
 746 
 747         /*
 748          * Allocate an htable hash bucket for the kernel
 749          * XX64 - tune for 64 bit procs
 750          */
 751         kas.a_hat->hat_num_hash = mmu.hash_cnt;
 752         kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
 753         bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
 754 
 755         /*
 756          * zero out the top level and cached htable pointers
 757          */
 758         kas.a_hat->hat_ht_cached = NULL;
 759         kas.a_hat->hat_htable = NULL;
 760 
 761         /*
 762          * Pre-allocate hrm_hashtab before enabling the collection of
 763          * refmod statistics.  Allocating on the fly would mean us
 764          * running the risk of suffering recursive mutex enters or
 765          * deadlocks.
 766          */
 767         hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
 768             KM_SLEEP);
 769 }
 770 
 771 /*
 772  * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
 773  *
 774  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
 775  * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
 776  * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
 777  */
 778 /*ARGSUSED*/
 779 static void
 780 hat_vlp_setup(struct cpu *cpu)
 781 {
 782 #if defined(__amd64) && !defined(__xpv)
 783         struct hat_cpu_info *hci = cpu->cpu_hat_info;
 784         pfn_t pfn;
 785 
 786         /*
 787          * allocate the level==2 page table for the bottom most
 788          * 512Gig of address space (this is where 32 bit apps live)
 789          */
 790         ASSERT(hci != NULL);
 791         hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
 792 
 793         /*
 794          * Allocate a top level pagetable and copy the kernel's
 795          * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
 796          */
 797         hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
 798         hci->hci_vlp_pfn =
 799             hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
 800         ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
 801         bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
 802 
 803         pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
 804         ASSERT(pfn != PFN_INVALID);
 805         hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
 806 #endif /* __amd64 && !__xpv */
 807 }
 808 
 809 /*ARGSUSED*/
 810 static void
 811 hat_vlp_teardown(cpu_t *cpu)
 812 {
 813 #if defined(__amd64) && !defined(__xpv)
 814         struct hat_cpu_info *hci;
 815 
 816         if ((hci = cpu->cpu_hat_info) == NULL)
 817                 return;
 818         if (hci->hci_vlp_l2ptes)
 819                 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
 820         if (hci->hci_vlp_l3ptes)
 821                 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
 822 #endif
 823 }
 824 
 825 #define NEXT_HKR(r, l, s, e) {                  \
 826         kernel_ranges[r].hkr_level = l;         \
 827         kernel_ranges[r].hkr_start_va = s;      \
 828         kernel_ranges[r].hkr_end_va = e;        \
 829         ++r;                                    \
 830 }
 831 
 832 /*
 833  * Finish filling in the kernel hat.
 834  * Pre fill in all top level kernel page table entries for the kernel's
 835  * part of the address range.  From this point on we can't use any new
 836  * kernel large pages if they need PTE's at max_level
 837  *
 838  * create the kmap mappings.
 839  */
 840 void
 841 hat_init_finish(void)
 842 {
 843         size_t          size;
 844         uint_t          r = 0;
 845         uintptr_t       va;
 846         hat_kernel_range_t *rp;
 847 
 848 
 849         /*
 850          * We are now effectively running on the kernel hat.
 851          * Clearing use_boot_reserve shuts off using the pre-allocated boot
 852          * reserve for all HAT allocations.  From here on, the reserves are
 853          * only used when avoiding recursion in kmem_alloc().
 854          */
 855         use_boot_reserve = 0;
 856         htable_adjust_reserve();
 857 
 858         /*
 859          * User HATs are initialized with copies of all kernel mappings in
 860          * higher level page tables. Ensure that those entries exist.
 861          */
 862 #if defined(__amd64)
 863 
 864         NEXT_HKR(r, 3, kernelbase, 0);
 865 #if defined(__xpv)
 866         NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
 867 #endif
 868 
 869 #elif defined(__i386)
 870 
 871 #if !defined(__xpv)
 872         if (mmu.pae_hat) {
 873                 va = kernelbase;
 874                 if ((va & LEVEL_MASK(2)) != va) {
 875                         va = P2ROUNDUP(va, LEVEL_SIZE(2));
 876                         NEXT_HKR(r, 1, kernelbase, va);
 877                 }
 878                 if (va != 0)
 879                         NEXT_HKR(r, 2, va, 0);
 880         } else
 881 #endif /* __xpv */
 882                 NEXT_HKR(r, 1, kernelbase, 0);
 883 
 884 #endif /* __i386 */
 885 
 886         num_kernel_ranges = r;
 887 
 888         /*
 889          * Create all the kernel pagetables that will have entries
 890          * shared to user HATs.
 891          */
 892         for (r = 0; r < num_kernel_ranges; ++r) {
 893                 rp = &kernel_ranges[r];
 894                 for (va = rp->hkr_start_va; va != rp->hkr_end_va;
 895                     va += LEVEL_SIZE(rp->hkr_level)) {
 896                         htable_t *ht;
 897 
 898                         if (IN_HYPERVISOR_VA(va))
 899                                 continue;
 900 
 901                         /* can/must skip if a page mapping already exists */
 902                         if (rp->hkr_level <= mmu.max_page_level &&
 903                             (ht = htable_getpage(kas.a_hat, va, NULL)) !=
 904                             NULL) {
 905                                 htable_release(ht);
 906                                 continue;
 907                         }
 908 
 909                         (void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
 910                             NULL);
 911                 }
 912         }
 913 
 914         /*
 915          * 32 bit PAE metal kernels use only 4 of the 512 entries in the
 916          * page holding the top level pagetable. We use the remainder for
 917          * the "per CPU" page tables for VLP processes.
 918          * Map the top level kernel pagetable into the kernel to make
 919          * it easy to use bcopy access these tables.
 920          */
 921         if (mmu.pae_hat) {
 922                 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
 923                 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
 924                     kas.a_hat->hat_htable->ht_pfn,
 925 #if !defined(__xpv)
 926                     PROT_WRITE |
 927 #endif
 928                     PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
 929                     HAT_LOAD | HAT_LOAD_NOCONSIST);
 930         }
 931         hat_vlp_setup(CPU);
 932 
 933         /*
 934          * Create kmap (cached mappings of kernel PTEs)
 935          * for 32 bit we map from segmap_start .. ekernelheap
 936          * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
 937          */
 938 #if defined(__i386)
 939         size = (uintptr_t)ekernelheap - segmap_start;
 940 #elif defined(__amd64)
 941         size = segmapsize;
 942 #endif
 943         hat_kmap_init((uintptr_t)segmap_start, size);
 944 }
 945 
 946 /*
 947  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
 948  * are 32 bit, so for safety we must use atomic_cas_64() to install these.
 949  */
 950 #ifdef __i386
 951 static void
 952 reload_pae32(hat_t *hat, cpu_t *cpu)
 953 {
 954         x86pte_t *src;
 955         x86pte_t *dest;
 956         x86pte_t pte;
 957         int i;
 958 
 959         /*
 960          * Load the 4 entries of the level 2 page table into this
 961          * cpu's range of the vlp_page and point cr3 at them.
 962          */
 963         ASSERT(mmu.pae_hat);
 964         src = hat->hat_vlp_ptes;
 965         dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
 966         for (i = 0; i < VLP_NUM_PTES; ++i) {
 967                 for (;;) {
 968                         pte = dest[i];
 969                         if (pte == src[i])
 970                                 break;
 971                         if (atomic_cas_64(dest + i, pte, src[i]) != src[i])
 972                                 break;
 973                 }
 974         }
 975 }
 976 #endif
 977 
 978 /*
 979  * Switch to a new active hat, maintaining bit masks to track active CPUs.
 980  *
 981  * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
 982  * remains a 32-bit value.
 983  */
 984 void
 985 hat_switch(hat_t *hat)
 986 {
 987         uint64_t        newcr3;
 988         cpu_t           *cpu = CPU;
 989         hat_t           *old = cpu->cpu_current_hat;
 990 
 991         /*
 992          * set up this information first, so we don't miss any cross calls
 993          */
 994         if (old != NULL) {
 995                 if (old == hat)
 996                         return;
 997                 if (old != kas.a_hat)
 998                         CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
 999         }
1000 
1001         /*
1002          * Add this CPU to the active set for this HAT.
1003          */
1004         if (hat != kas.a_hat) {
1005                 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
1006         }
1007         cpu->cpu_current_hat = hat;
1008 
1009         /*
1010          * now go ahead and load cr3
1011          */
1012         if (hat->hat_flags & HAT_VLP) {
1013 #if defined(__amd64)
1014                 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1015 
1016                 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1017                 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1018 #elif defined(__i386)
1019                 reload_pae32(hat, cpu);
1020                 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1021                     (cpu->cpu_id + 1) * VLP_SIZE;
1022 #endif
1023         } else {
1024                 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1025         }
1026 #ifdef __xpv
1027         {
1028                 struct mmuext_op t[2];
1029                 uint_t retcnt;
1030                 uint_t opcnt = 1;
1031 
1032                 t[0].cmd = MMUEXT_NEW_BASEPTR;
1033                 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1034 #if defined(__amd64)
1035                 /*
1036                  * There's an interesting problem here, as to what to
1037                  * actually specify when switching to the kernel hat.
1038                  * For now we'll reuse the kernel hat again.
1039                  */
1040                 t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1041                 if (hat == kas.a_hat)
1042                         t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1043                 else
1044                         t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1045                 ++opcnt;
1046 #endif  /* __amd64 */
1047                 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1048                         panic("HYPERVISOR_mmu_update() failed");
1049                 ASSERT(retcnt == opcnt);
1050 
1051         }
1052 #else
1053         setcr3(newcr3);
1054 #endif
1055         ASSERT(cpu == CPU);
1056 }
1057 
1058 /*
1059  * Utility to return a valid x86pte_t from protections, pfn, and level number
1060  */
1061 static x86pte_t
1062 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1063 {
1064         x86pte_t        pte;
1065         uint_t          cache_attr = attr & HAT_ORDER_MASK;
1066 
1067         pte = MAKEPTE(pfn, level);
1068 
1069         if (attr & PROT_WRITE)
1070                 PTE_SET(pte, PT_WRITABLE);
1071 
1072         if (attr & PROT_USER)
1073                 PTE_SET(pte, PT_USER);
1074 
1075         if (!(attr & PROT_EXEC))
1076                 PTE_SET(pte, mmu.pt_nx);
1077 
1078         /*
1079          * Set the software bits used track ref/mod sync's and hments.
1080          * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1081          */
1082         if (flags & HAT_LOAD_NOCONSIST)
1083                 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1084         else if (attr & HAT_NOSYNC)
1085                 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1086 
1087         /*
1088          * Set the caching attributes in the PTE. The combination
1089          * of attributes are poorly defined, so we pay attention
1090          * to them in the given order.
1091          *
1092          * The test for HAT_STRICTORDER is different because it's defined
1093          * as "0" - which was a stupid thing to do, but is too late to change!
1094          */
1095         if (cache_attr == HAT_STRICTORDER) {
1096                 PTE_SET(pte, PT_NOCACHE);
1097         /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1098         } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1099                 /* nothing to set */;
1100         } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1101                 PTE_SET(pte, PT_NOCACHE);
1102                 if (is_x86_feature(x86_featureset, X86FSET_PAT))
1103                         PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1104                 else
1105                         PTE_SET(pte, PT_WRITETHRU);
1106         } else {
1107                 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1108         }
1109 
1110         return (pte);
1111 }
1112 
1113 /*
1114  * Duplicate address translations of the parent to the child.
1115  * This function really isn't used anymore.
1116  */
1117 /*ARGSUSED*/
1118 int
1119 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1120 {
1121         ASSERT((uintptr_t)addr < kernelbase);
1122         ASSERT(new != kas.a_hat);
1123         ASSERT(old != kas.a_hat);
1124         return (0);
1125 }
1126 
1127 /*
1128  * returns number of bytes that have valid mappings in hat.
1129  */
1130 size_t
1131 hat_get_mapped_size(hat_t *hat)
1132 {
1133         size_t total = 0;
1134         int l;
1135 
1136         for (l = 0; l <= mmu.max_page_level; l++)
1137                 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1138         total += hat->hat_ism_pgcnt;
1139 
1140         return (total);
1141 }
1142 
1143 /*
1144  * enable/disable collection of stats for hat.
1145  */
1146 int
1147 hat_stats_enable(hat_t *hat)
1148 {
1149         atomic_inc_32(&hat->hat_stats);
1150         return (1);
1151 }
1152 
1153 void
1154 hat_stats_disable(hat_t *hat)
1155 {
1156         atomic_dec_32(&hat->hat_stats);
1157 }
1158 
1159 /*
1160  * Utility to sync the ref/mod bits from a page table entry to the page_t
1161  * We must be holding the mapping list lock when this is called.
1162  */
1163 static void
1164 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1165 {
1166         uint_t  rm = 0;
1167         pgcnt_t pgcnt;
1168 
1169         if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1170                 return;
1171 
1172         if (PTE_GET(pte, PT_REF))
1173                 rm |= P_REF;
1174 
1175         if (PTE_GET(pte, PT_MOD))
1176                 rm |= P_MOD;
1177 
1178         if (rm == 0)
1179                 return;
1180 
1181         /*
1182          * sync to all constituent pages of a large page
1183          */
1184         ASSERT(x86_hm_held(pp));
1185         pgcnt = page_get_pagecnt(level);
1186         ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1187         for (; pgcnt > 0; --pgcnt) {
1188                 /*
1189                  * hat_page_demote() can't decrease
1190                  * pszc below this mapping size
1191                  * since this large mapping existed after we
1192                  * took mlist lock.
1193                  */
1194                 ASSERT(pp->p_szc >= level);
1195                 hat_page_setattr(pp, rm);
1196                 ++pp;
1197         }
1198 }
1199 
1200 /*
1201  * This the set of PTE bits for PFN, permissions and caching
1202  * that are allowed to change on a HAT_LOAD_REMAP
1203  */
1204 #define PT_REMAP_BITS                                                   \
1205         (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |                \
1206         PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1207 
1208 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX)
1209 /*
1210  * Do the low-level work to get a mapping entered into a HAT's pagetables
1211  * and in the mapping list of the associated page_t.
1212  */
1213 static int
1214 hati_pte_map(
1215         htable_t        *ht,
1216         uint_t          entry,
1217         page_t          *pp,
1218         x86pte_t        pte,
1219         int             flags,
1220         void            *pte_ptr)
1221 {
1222         hat_t           *hat = ht->ht_hat;
1223         x86pte_t        old_pte;
1224         level_t         l = ht->ht_level;
1225         hment_t         *hm;
1226         uint_t          is_consist;
1227         uint_t          is_locked;
1228         int             rv = 0;
1229 
1230         /*
1231          * Is this a consistent (ie. need mapping list lock) mapping?
1232          */
1233         is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1234 
1235         /*
1236          * Track locked mapping count in the htable.  Do this first,
1237          * as we track locking even if there already is a mapping present.
1238          */
1239         is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat;
1240         if (is_locked)
1241                 HTABLE_LOCK_INC(ht);
1242 
1243         /*
1244          * Acquire the page's mapping list lock and get an hment to use.
1245          * Note that hment_prepare() might return NULL.
1246          */
1247         if (is_consist) {
1248                 x86_hm_enter(pp);
1249                 hm = hment_prepare(ht, entry, pp);
1250         }
1251 
1252         /*
1253          * Set the new pte, retrieving the old one at the same time.
1254          */
1255         old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1256 
1257         /*
1258          * Did we get a large page / page table collision?
1259          */
1260         if (old_pte == LPAGE_ERROR) {
1261                 if (is_locked)
1262                         HTABLE_LOCK_DEC(ht);
1263                 rv = -1;
1264                 goto done;
1265         }
1266 
1267         /*
1268          * If the mapping didn't change there is nothing more to do.
1269          */
1270         if (PTE_EQUIV(pte, old_pte))
1271                 goto done;
1272 
1273         /*
1274          * Install a new mapping in the page's mapping list
1275          */
1276         if (!PTE_ISVALID(old_pte)) {
1277                 if (is_consist) {
1278                         hment_assign(ht, entry, pp, hm);
1279                         x86_hm_exit(pp);
1280                 } else {
1281                         ASSERT(flags & HAT_LOAD_NOCONSIST);
1282                 }
1283 #if defined(__amd64)
1284                 if (ht->ht_flags & HTABLE_VLP) {
1285                         cpu_t *cpu = CPU;
1286                         x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1287                         VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1288                 }
1289 #endif
1290                 HTABLE_INC(ht->ht_valid_cnt);
1291                 PGCNT_INC(hat, l);
1292                 return (rv);
1293         }
1294 
1295         /*
1296          * Remap's are more complicated:
1297          *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1298          *    We also require that NOCONSIST be specified.
1299          *  - Otherwise only permission or caching bits may change.
1300          */
1301         if (!PTE_ISPAGE(old_pte, l))
1302                 panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1303 
1304         if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1305                 REMAPASSERT(flags & HAT_LOAD_REMAP);
1306                 REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1307                 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1308                 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1309                     pf_is_memory(PTE2PFN(pte, l)));
1310                 REMAPASSERT(!is_consist);
1311         }
1312 
1313         /*
1314          * We only let remaps change the certain bits in the PTE.
1315          */
1316         if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1317                 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1318                     old_pte, pte);
1319 
1320         /*
1321          * We don't create any mapping list entries on a remap, so release
1322          * any allocated hment after we drop the mapping list lock.
1323          */
1324 done:
1325         if (is_consist) {
1326                 x86_hm_exit(pp);
1327                 if (hm != NULL)
1328                         hment_free(hm);
1329         }
1330         return (rv);
1331 }
1332 
1333 /*
1334  * Internal routine to load a single page table entry. This only fails if
1335  * we attempt to overwrite a page table link with a large page.
1336  */
1337 static int
1338 hati_load_common(
1339         hat_t           *hat,
1340         uintptr_t       va,
1341         page_t          *pp,
1342         uint_t          attr,
1343         uint_t          flags,
1344         level_t         level,
1345         pfn_t           pfn)
1346 {
1347         htable_t        *ht;
1348         uint_t          entry;
1349         x86pte_t        pte;
1350         int             rv = 0;
1351 
1352         /*
1353          * The number 16 is arbitrary and here to catch a recursion problem
1354          * early before we blow out the kernel stack.
1355          */
1356         ++curthread->t_hatdepth;
1357         ASSERT(curthread->t_hatdepth < 16);
1358 
1359         ASSERT(hat == kas.a_hat ||
1360             AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1361 
1362         if (flags & HAT_LOAD_SHARE)
1363                 hat->hat_flags |= HAT_SHARED;
1364 
1365         /*
1366          * Find the page table that maps this page if it already exists.
1367          */
1368         ht = htable_lookup(hat, va, level);
1369 
1370         /*
1371          * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1372          */
1373         if (pp == NULL)
1374                 flags |= HAT_LOAD_NOCONSIST;
1375 
1376         if (ht == NULL) {
1377                 ht = htable_create(hat, va, level, NULL);
1378                 ASSERT(ht != NULL);
1379         }
1380         entry = htable_va2entry(va, ht);
1381 
1382         /*
1383          * a bunch of paranoid error checking
1384          */
1385         ASSERT(ht->ht_busy > 0);
1386         if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1387                 panic("hati_load_common: bad htable %p, va %p",
1388                     (void *)ht, (void *)va);
1389         ASSERT(ht->ht_level == level);
1390 
1391         /*
1392          * construct the new PTE
1393          */
1394         if (hat == kas.a_hat)
1395                 attr &= ~PROT_USER;
1396         pte = hati_mkpte(pfn, attr, level, flags);
1397         if (hat == kas.a_hat && va >= kernelbase)
1398                 PTE_SET(pte, mmu.pt_global);
1399 
1400         /*
1401          * establish the mapping
1402          */
1403         rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1404 
1405         /*
1406          * release the htable and any reserves
1407          */
1408         htable_release(ht);
1409         --curthread->t_hatdepth;
1410         return (rv);
1411 }
1412 
1413 /*
1414  * special case of hat_memload to deal with some kernel addrs for performance
1415  */
1416 static void
1417 hat_kmap_load(
1418         caddr_t         addr,
1419         page_t          *pp,
1420         uint_t          attr,
1421         uint_t          flags)
1422 {
1423         uintptr_t       va = (uintptr_t)addr;
1424         x86pte_t        pte;
1425         pfn_t           pfn = page_pptonum(pp);
1426         pgcnt_t         pg_off = mmu_btop(va - mmu.kmap_addr);
1427         htable_t        *ht;
1428         uint_t          entry;
1429         void            *pte_ptr;
1430 
1431         /*
1432          * construct the requested PTE
1433          */
1434         attr &= ~PROT_USER;
1435         attr |= HAT_STORECACHING_OK;
1436         pte = hati_mkpte(pfn, attr, 0, flags);
1437         PTE_SET(pte, mmu.pt_global);
1438 
1439         /*
1440          * Figure out the pte_ptr and htable and use common code to finish up
1441          */
1442         if (mmu.pae_hat)
1443                 pte_ptr = mmu.kmap_ptes + pg_off;
1444         else
1445                 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1446         ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1447             LEVEL_SHIFT(1)];
1448         entry = htable_va2entry(va, ht);
1449         ++curthread->t_hatdepth;
1450         ASSERT(curthread->t_hatdepth < 16);
1451         (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1452         --curthread->t_hatdepth;
1453 }
1454 
1455 /*
1456  * hat_memload() - load a translation to the given page struct
1457  *
1458  * Flags for hat_memload/hat_devload/hat_*attr.
1459  *
1460  *      HAT_LOAD        Default flags to load a translation to the page.
1461  *
1462  *      HAT_LOAD_LOCK   Lock down mapping resources; hat_map(), hat_memload(),
1463  *                      and hat_devload().
1464  *
1465  *      HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1466  *                      sets PT_NOCONSIST
1467  *
1468  *      HAT_LOAD_SHARE  A flag to hat_memload() to indicate h/w page tables
1469  *                      that map some user pages (not kas) is shared by more
1470  *                      than one process (eg. ISM).
1471  *
1472  *      HAT_LOAD_REMAP  Reload a valid pte with a different page frame.
1473  *
1474  *      HAT_NO_KALLOC   Do not kmem_alloc while creating the mapping; at this
1475  *                      point, it's setting up mapping to allocate internal
1476  *                      hat layer data structures.  This flag forces hat layer
1477  *                      to tap its reserves in order to prevent infinite
1478  *                      recursion.
1479  *
1480  * The following is a protection attribute (like PROT_READ, etc.)
1481  *
1482  *      HAT_NOSYNC      set PT_NOSYNC - this mapping's ref/mod bits
1483  *                      are never cleared.
1484  *
1485  * Installing new valid PTE's and creation of the mapping list
1486  * entry are controlled under the same lock. It's derived from the
1487  * page_t being mapped.
1488  */
1489 static uint_t supported_memload_flags =
1490         HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1491         HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1492 
1493 void
1494 hat_memload(
1495         hat_t           *hat,
1496         caddr_t         addr,
1497         page_t          *pp,
1498         uint_t          attr,
1499         uint_t          flags)
1500 {
1501         uintptr_t       va = (uintptr_t)addr;
1502         level_t         level = 0;
1503         pfn_t           pfn = page_pptonum(pp);
1504 
1505         XPV_DISALLOW_MIGRATE();
1506         ASSERT(IS_PAGEALIGNED(va));
1507         ASSERT(hat == kas.a_hat || va < _userlimit);
1508         ASSERT(hat == kas.a_hat ||
1509             AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1510         ASSERT((flags & supported_memload_flags) == flags);
1511 
1512         ASSERT(!IN_VA_HOLE(va));
1513         ASSERT(!PP_ISFREE(pp));
1514 
1515         /*
1516          * kernel address special case for performance.
1517          */
1518         if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1519                 ASSERT(hat == kas.a_hat);
1520                 hat_kmap_load(addr, pp, attr, flags);
1521                 XPV_ALLOW_MIGRATE();
1522                 return;
1523         }
1524 
1525         /*
1526          * This is used for memory with normal caching enabled, so
1527          * always set HAT_STORECACHING_OK.
1528          */
1529         attr |= HAT_STORECACHING_OK;
1530         if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1531                 panic("unexpected hati_load_common() failure");
1532         XPV_ALLOW_MIGRATE();
1533 }
1534 
1535 /* ARGSUSED */
1536 void
1537 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1538     uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1539 {
1540         hat_memload(hat, addr, pp, attr, flags);
1541 }
1542 
1543 /*
1544  * Load the given array of page structs using large pages when possible
1545  */
1546 void
1547 hat_memload_array(
1548         hat_t           *hat,
1549         caddr_t         addr,
1550         size_t          len,
1551         page_t          **pages,
1552         uint_t          attr,
1553         uint_t          flags)
1554 {
1555         uintptr_t       va = (uintptr_t)addr;
1556         uintptr_t       eaddr = va + len;
1557         level_t         level;
1558         size_t          pgsize;
1559         pgcnt_t         pgindx = 0;
1560         pfn_t           pfn;
1561         pgcnt_t         i;
1562 
1563         XPV_DISALLOW_MIGRATE();
1564         ASSERT(IS_PAGEALIGNED(va));
1565         ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1566         ASSERT(hat == kas.a_hat ||
1567             AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1568         ASSERT((flags & supported_memload_flags) == flags);
1569 
1570         /*
1571          * memload is used for memory with full caching enabled, so
1572          * set HAT_STORECACHING_OK.
1573          */
1574         attr |= HAT_STORECACHING_OK;
1575 
1576         /*
1577          * handle all pages using largest possible pagesize
1578          */
1579         while (va < eaddr) {
1580                 /*
1581                  * decide what level mapping to use (ie. pagesize)
1582                  */
1583                 pfn = page_pptonum(pages[pgindx]);
1584                 for (level = mmu.max_page_level; ; --level) {
1585                         pgsize = LEVEL_SIZE(level);
1586                         if (level == 0)
1587                                 break;
1588 
1589                         if (!IS_P2ALIGNED(va, pgsize) ||
1590                             (eaddr - va) < pgsize ||
1591                             !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1592                                 continue;
1593 
1594                         /*
1595                          * To use a large mapping of this size, all the
1596                          * pages we are passed must be sequential subpages
1597                          * of the large page.
1598                          * hat_page_demote() can't change p_szc because
1599                          * all pages are locked.
1600                          */
1601                         if (pages[pgindx]->p_szc >= level) {
1602                                 for (i = 0; i < mmu_btop(pgsize); ++i) {
1603                                         if (pfn + i !=
1604                                             page_pptonum(pages[pgindx + i]))
1605                                                 break;
1606                                         ASSERT(pages[pgindx + i]->p_szc >=
1607                                             level);
1608                                         ASSERT(pages[pgindx] + i ==
1609                                             pages[pgindx + i]);
1610                                 }
1611                                 if (i == mmu_btop(pgsize)) {
1612 #ifdef DEBUG
1613                                         if (level == 2)
1614                                                 map1gcnt++;
1615 #endif
1616                                         break;
1617                                 }
1618                         }
1619                 }
1620 
1621                 /*
1622                  * Load this page mapping. If the load fails, try a smaller
1623                  * pagesize.
1624                  */
1625                 ASSERT(!IN_VA_HOLE(va));
1626                 while (hati_load_common(hat, va, pages[pgindx], attr,
1627                     flags, level, pfn) != 0) {
1628                         if (level == 0)
1629                                 panic("unexpected hati_load_common() failure");
1630                         --level;
1631                         pgsize = LEVEL_SIZE(level);
1632                 }
1633 
1634                 /*
1635                  * move to next page
1636                  */
1637                 va += pgsize;
1638                 pgindx += mmu_btop(pgsize);
1639         }
1640         XPV_ALLOW_MIGRATE();
1641 }
1642 
1643 /* ARGSUSED */
1644 void
1645 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1646     struct page **pps, uint_t attr, uint_t flags,
1647     hat_region_cookie_t rcookie)
1648 {
1649         hat_memload_array(hat, addr, len, pps, attr, flags);
1650 }
1651 
1652 /*
1653  * void hat_devload(hat, addr, len, pf, attr, flags)
1654  *      load/lock the given page frame number
1655  *
1656  * Advisory ordering attributes. Apply only to device mappings.
1657  *
1658  * HAT_STRICTORDER: the CPU must issue the references in order, as the
1659  *      programmer specified.  This is the default.
1660  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1661  *      of reordering; store or load with store or load).
1662  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1663  *      to consecutive locations (for example, turn two consecutive byte
1664  *      stores into one halfword store), and it may batch individual loads
1665  *      (for example, turn two consecutive byte loads into one halfword load).
1666  *      This also implies re-ordering.
1667  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1668  *      until another store occurs.  The default is to fetch new data
1669  *      on every load.  This also implies merging.
1670  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1671  *      the device (perhaps with other data) at a later time.  The default is
1672  *      to push the data right away.  This also implies load caching.
1673  *
1674  * Equivalent of hat_memload(), but can be used for device memory where
1675  * there are no page_t's and we support additional flags (write merging, etc).
1676  * Note that we can have large page mappings with this interface.
1677  */
1678 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1679         HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1680         HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1681 
1682 void
1683 hat_devload(
1684         hat_t           *hat,
1685         caddr_t         addr,
1686         size_t          len,
1687         pfn_t           pfn,
1688         uint_t          attr,
1689         int             flags)
1690 {
1691         uintptr_t       va = ALIGN2PAGE(addr);
1692         uintptr_t       eva = va + len;
1693         level_t         level;
1694         size_t          pgsize;
1695         page_t          *pp;
1696         int             f;      /* per PTE copy of flags  - maybe modified */
1697         uint_t          a;      /* per PTE copy of attr */
1698 
1699         XPV_DISALLOW_MIGRATE();
1700         ASSERT(IS_PAGEALIGNED(va));
1701         ASSERT(hat == kas.a_hat || eva <= _userlimit);
1702         ASSERT(hat == kas.a_hat ||
1703             AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1704         ASSERT((flags & supported_devload_flags) == flags);
1705 
1706         /*
1707          * handle all pages
1708          */
1709         while (va < eva) {
1710 
1711                 /*
1712                  * decide what level mapping to use (ie. pagesize)
1713                  */
1714                 for (level = mmu.max_page_level; ; --level) {
1715                         pgsize = LEVEL_SIZE(level);
1716                         if (level == 0)
1717                                 break;
1718                         if (IS_P2ALIGNED(va, pgsize) &&
1719                             (eva - va) >= pgsize &&
1720                             IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1721 #ifdef DEBUG
1722                                 if (level == 2)
1723                                         map1gcnt++;
1724 #endif
1725                                 break;
1726                         }
1727                 }
1728 
1729                 /*
1730                  * If this is just memory then allow caching (this happens
1731                  * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1732                  * to override that. If we don't have a page_t then make sure
1733                  * NOCONSIST is set.
1734                  */
1735                 a = attr;
1736                 f = flags;
1737                 if (!pf_is_memory(pfn))
1738                         f |= HAT_LOAD_NOCONSIST;
1739                 else if (!(a & HAT_PLAT_NOCACHE))
1740                         a |= HAT_STORECACHING_OK;
1741 
1742                 if (f & HAT_LOAD_NOCONSIST)
1743                         pp = NULL;
1744                 else
1745                         pp = page_numtopp_nolock(pfn);
1746 
1747                 /*
1748                  * Check to make sure we are really trying to map a valid
1749                  * memory page. The caller wishing to intentionally map
1750                  * free memory pages will have passed the HAT_LOAD_NOCONSIST
1751                  * flag, then pp will be NULL.
1752                  */
1753                 if (pp != NULL) {
1754                         if (PP_ISFREE(pp)) {
1755                                 panic("hat_devload: loading "
1756                                     "a mapping to free page %p", (void *)pp);
1757                         }
1758 
1759                         if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1760                                 panic("hat_devload: loading a mapping "
1761                                     "to an unlocked page %p",
1762                                     (void *)pp);
1763                         }
1764                 }
1765 
1766                 /*
1767                  * load this page mapping
1768                  */
1769                 ASSERT(!IN_VA_HOLE(va));
1770                 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1771                         if (level == 0)
1772                                 panic("unexpected hati_load_common() failure");
1773                         --level;
1774                         pgsize = LEVEL_SIZE(level);
1775                 }
1776 
1777                 /*
1778                  * move to next page
1779                  */
1780                 va += pgsize;
1781                 pfn += mmu_btop(pgsize);
1782         }
1783         XPV_ALLOW_MIGRATE();
1784 }
1785 
1786 /*
1787  * void hat_unlock(hat, addr, len)
1788  *      unlock the mappings to a given range of addresses
1789  *
1790  * Locks are tracked by ht_lock_cnt in the htable.
1791  */
1792 void
1793 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1794 {
1795         uintptr_t       vaddr = (uintptr_t)addr;
1796         uintptr_t       eaddr = vaddr + len;
1797         htable_t        *ht = NULL;
1798 
1799         /*
1800          * kernel entries are always locked, we don't track lock counts
1801          */
1802         ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1803         ASSERT(IS_PAGEALIGNED(vaddr));
1804         ASSERT(IS_PAGEALIGNED(eaddr));
1805         if (hat == kas.a_hat)
1806                 return;
1807         if (eaddr > _userlimit)
1808                 panic("hat_unlock() address out of range - above _userlimit");
1809 
1810         XPV_DISALLOW_MIGRATE();
1811         ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1812         while (vaddr < eaddr) {
1813                 (void) htable_walk(hat, &ht, &vaddr, eaddr);
1814                 if (ht == NULL)
1815                         break;
1816 
1817                 ASSERT(!IN_VA_HOLE(vaddr));
1818 
1819                 if (ht->ht_lock_cnt < 1)
1820                         panic("hat_unlock(): lock_cnt < 1, "
1821                             "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
1822                 HTABLE_LOCK_DEC(ht);
1823 
1824                 vaddr += LEVEL_SIZE(ht->ht_level);
1825         }
1826         if (ht)
1827                 htable_release(ht);
1828         XPV_ALLOW_MIGRATE();
1829 }
1830 
1831 /* ARGSUSED */
1832 void
1833 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1834     hat_region_cookie_t rcookie)
1835 {
1836         panic("No shared region support on x86");
1837 }
1838 
1839 #if !defined(__xpv)
1840 /*
1841  * Cross call service routine to demap a virtual page on
1842  * the current CPU or flush all mappings in TLB.
1843  */
1844 /*ARGSUSED*/
1845 static int
1846 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1847 {
1848         hat_t   *hat = (hat_t *)a1;
1849         caddr_t addr = (caddr_t)a2;
1850         size_t len = (size_t)a3;
1851 
1852         /*
1853          * If the target hat isn't the kernel and this CPU isn't operating
1854          * in the target hat, we can ignore the cross call.
1855          */
1856         if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1857                 return (0);
1858 
1859         /*
1860          * For a normal address, we flush a range of contiguous mappings
1861          */
1862         if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1863                 for (size_t i = 0; i < len; i += MMU_PAGESIZE)
1864                         mmu_tlbflush_entry(addr + i);
1865                 return (0);
1866         }
1867 
1868         /*
1869          * Otherwise we reload cr3 to effect a complete TLB flush.
1870          *
1871          * A reload of cr3 on a VLP process also means we must also recopy in
1872          * the pte values from the struct hat
1873          */
1874         if (hat->hat_flags & HAT_VLP) {
1875 #if defined(__amd64)
1876                 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1877 
1878                 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1879 #elif defined(__i386)
1880                 reload_pae32(hat, CPU);
1881 #endif
1882         }
1883         reload_cr3();
1884         return (0);
1885 }
1886 
1887 /*
1888  * Flush all TLB entries, including global (ie. kernel) ones.
1889  */
1890 static void
1891 flush_all_tlb_entries(void)
1892 {
1893         ulong_t cr4 = getcr4();
1894 
1895         if (cr4 & CR4_PGE) {
1896                 setcr4(cr4 & ~(ulong_t)CR4_PGE);
1897                 setcr4(cr4);
1898 
1899                 /*
1900                  * 32 bit PAE also needs to always reload_cr3()
1901                  */
1902                 if (mmu.max_level == 2)
1903                         reload_cr3();
1904         } else {
1905                 reload_cr3();
1906         }
1907 }
1908 
1909 #define TLB_CPU_HALTED  (01ul)
1910 #define TLB_INVAL_ALL   (02ul)
1911 #define CAS_TLB_INFO(cpu, old, new)     \
1912         atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1913 
1914 /*
1915  * Record that a CPU is going idle
1916  */
1917 void
1918 tlb_going_idle(void)
1919 {
1920         atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
1921 }
1922 
1923 /*
1924  * Service a delayed TLB flush if coming out of being idle.
1925  * It will be called from cpu idle notification with interrupt disabled.
1926  */
1927 void
1928 tlb_service(void)
1929 {
1930         ulong_t tlb_info;
1931         ulong_t found;
1932 
1933         /*
1934          * We only have to do something if coming out of being idle.
1935          */
1936         tlb_info = CPU->cpu_m.mcpu_tlb_info;
1937         if (tlb_info & TLB_CPU_HALTED) {
1938                 ASSERT(CPU->cpu_current_hat == kas.a_hat);
1939 
1940                 /*
1941                  * Atomic clear and fetch of old state.
1942                  */
1943                 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
1944                         ASSERT(found & TLB_CPU_HALTED);
1945                         tlb_info = found;
1946                         SMT_PAUSE();
1947                 }
1948                 if (tlb_info & TLB_INVAL_ALL)
1949                         flush_all_tlb_entries();
1950         }
1951 }
1952 #endif /* !__xpv */
1953 
1954 /*
1955  * Internal routine to do cross calls to invalidate a range of pages on
1956  * all CPUs using a given hat.
1957  */
1958 void
1959 hat_tlb_inval_range(hat_t *hat, uintptr_t va, size_t len)
1960 {
1961         extern int      flushes_require_xcalls; /* from mp_startup.c */
1962         cpuset_t        justme;
1963         cpuset_t        cpus_to_shootdown;
1964 #ifndef __xpv
1965         cpuset_t        check_cpus;
1966         cpu_t           *cpup;
1967         int             c;
1968 #endif
1969 
1970         /*
1971          * If the hat is being destroyed, there are no more users, so
1972          * demap need not do anything.
1973          */
1974         if (hat->hat_flags & HAT_FREEING)
1975                 return;
1976 
1977         /*
1978          * If demapping from a shared pagetable, we best demap the
1979          * entire set of user TLBs, since we don't know what addresses
1980          * these were shared at.
1981          */
1982         if (hat->hat_flags & HAT_SHARED) {
1983                 hat = kas.a_hat;
1984                 va = DEMAP_ALL_ADDR;
1985         }
1986 
1987         /*
1988          * if not running with multiple CPUs, don't use cross calls
1989          */
1990         if (panicstr || !flushes_require_xcalls) {
1991 #ifdef __xpv
1992                 if (va == DEMAP_ALL_ADDR) {
1993                         xen_flush_tlb();
1994                 } else {
1995                         for (size_t i = 0; i < len; i += MMU_PAGESIZE)
1996                                 xen_flush_va((caddr_t)(va + i));
1997                 }
1998 #else
1999                 (void) hati_demap_func((xc_arg_t)hat,
2000                     (xc_arg_t)va, (xc_arg_t)len);
2001 #endif
2002                 return;
2003         }
2004 
2005 
2006         /*
2007          * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2008          * Otherwise it's just CPUs currently executing in this hat.
2009          */
2010         kpreempt_disable();
2011         CPUSET_ONLY(justme, CPU->cpu_id);
2012         if (hat == kas.a_hat)
2013                 cpus_to_shootdown = khat_cpuset;
2014         else
2015                 cpus_to_shootdown = hat->hat_cpus;
2016 
2017 #ifndef __xpv
2018         /*
2019          * If any CPUs in the set are idle, just request a delayed flush
2020          * and avoid waking them up.
2021          */
2022         check_cpus = cpus_to_shootdown;
2023         for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2024                 ulong_t tlb_info;
2025 
2026                 if (!CPU_IN_SET(check_cpus, c))
2027                         continue;
2028                 CPUSET_DEL(check_cpus, c);
2029                 cpup = cpu[c];
2030                 if (cpup == NULL)
2031                         continue;
2032 
2033                 tlb_info = cpup->cpu_m.mcpu_tlb_info;
2034                 while (tlb_info == TLB_CPU_HALTED) {
2035                         (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2036                             TLB_CPU_HALTED | TLB_INVAL_ALL);
2037                         SMT_PAUSE();
2038                         tlb_info = cpup->cpu_m.mcpu_tlb_info;
2039                 }
2040                 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2041                         HATSTAT_INC(hs_tlb_inval_delayed);
2042                         CPUSET_DEL(cpus_to_shootdown, c);
2043                 }
2044         }
2045 #endif
2046 
2047         if (CPUSET_ISNULL(cpus_to_shootdown) ||
2048             CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2049 
2050 #ifdef __xpv
2051                 if (va == DEMAP_ALL_ADDR) {
2052                         xen_flush_tlb();
2053                 } else {
2054                         for (size_t i = 0; i < len; i += MMU_PAGESIZE)
2055                                 xen_flush_va((caddr_t)(va + i));
2056                 }
2057 #else
2058                 (void) hati_demap_func((xc_arg_t)hat,
2059                     (xc_arg_t)va, (xc_arg_t)len);
2060 #endif
2061 
2062         } else {
2063 
2064                 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2065 #ifdef __xpv
2066                 if (va == DEMAP_ALL_ADDR) {
2067                         xen_gflush_tlb(cpus_to_shootdown);
2068                 } else {
2069                         for (size_t i = 0; i < len; i += MMU_PAGESIZE) {
2070                                 xen_gflush_va((caddr_t)(va + i),
2071                                     cpus_to_shootdown);
2072                         }
2073                 }
2074 #else
2075                 xc_call((xc_arg_t)hat, (xc_arg_t)va, (xc_arg_t)len,
2076                     CPUSET2BV(cpus_to_shootdown), hati_demap_func);
2077 #endif
2078 
2079         }
2080         kpreempt_enable();
2081 }
2082 
2083 void
2084 hat_tlb_inval(hat_t *hat, uintptr_t va)
2085 {
2086         hat_tlb_inval_range(hat, va, MMU_PAGESIZE);
2087 }
2088 
2089 /*
2090  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2091  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
2092  * handle releasing of the htables.
2093  */
2094 void
2095 hat_pte_unmap(
2096         htable_t        *ht,
2097         uint_t          entry,
2098         uint_t          flags,
2099         x86pte_t        old_pte,
2100         void            *pte_ptr,
2101         boolean_t       tlb)
2102 {
2103         hat_t           *hat = ht->ht_hat;
2104         hment_t         *hm = NULL;
2105         page_t          *pp = NULL;
2106         level_t         l = ht->ht_level;
2107         pfn_t           pfn;
2108 
2109         /*
2110          * We always track the locking counts, even if nothing is unmapped
2111          */
2112         if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2113                 ASSERT(ht->ht_lock_cnt > 0);
2114                 HTABLE_LOCK_DEC(ht);
2115         }
2116 
2117         /*
2118          * Figure out which page's mapping list lock to acquire using the PFN
2119          * passed in "old" PTE. We then attempt to invalidate the PTE.
2120          * If another thread, probably a hat_pageunload, has asynchronously
2121          * unmapped/remapped this address we'll loop here.
2122          */
2123         ASSERT(ht->ht_busy > 0);
2124         while (PTE_ISVALID(old_pte)) {
2125                 pfn = PTE2PFN(old_pte, l);
2126                 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2127                         pp = NULL;
2128                 } else {
2129 #ifdef __xpv
2130                         if (pfn == PFN_INVALID)
2131                                 panic("Invalid PFN, but not PT_NOCONSIST");
2132 #endif
2133                         pp = page_numtopp_nolock(pfn);
2134                         if (pp == NULL) {
2135                                 panic("no page_t, not NOCONSIST: old_pte="
2136                                     FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2137                                     old_pte, (uintptr_t)ht, entry,
2138                                     (uintptr_t)pte_ptr);
2139                         }
2140                         x86_hm_enter(pp);
2141                 }
2142 
2143                 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb);
2144 
2145                 /*
2146                  * If the page hadn't changed we've unmapped it and can proceed
2147                  */
2148                 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2149                         break;
2150 
2151                 /*
2152                  * Otherwise, we'll have to retry with the current old_pte.
2153                  * Drop the hment lock, since the pfn may have changed.
2154                  */
2155                 if (pp != NULL) {
2156                         x86_hm_exit(pp);
2157                         pp = NULL;
2158                 } else {
2159                         ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2160                 }
2161         }
2162 
2163         /*
2164          * If the old mapping wasn't valid, there's nothing more to do
2165          */
2166         if (!PTE_ISVALID(old_pte)) {
2167                 if (pp != NULL)
2168                         x86_hm_exit(pp);
2169                 return;
2170         }
2171 
2172         /*
2173          * Take care of syncing any MOD/REF bits and removing the hment.
2174          */
2175         if (pp != NULL) {
2176                 if (!(flags & HAT_UNLOAD_NOSYNC))
2177                         hati_sync_pte_to_page(pp, old_pte, l);
2178                 hm = hment_remove(pp, ht, entry);
2179                 x86_hm_exit(pp);
2180                 if (hm != NULL)
2181                         hment_free(hm);
2182         }
2183 
2184         /*
2185          * Handle book keeping in the htable and hat
2186          */
2187         ASSERT(ht->ht_valid_cnt > 0);
2188         HTABLE_DEC(ht->ht_valid_cnt);
2189         PGCNT_DEC(hat, l);
2190 }
2191 
2192 /*
2193  * very cheap unload implementation to special case some kernel addresses
2194  */
2195 static void
2196 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2197 {
2198         uintptr_t       va = (uintptr_t)addr;
2199         uintptr_t       eva = va + len;
2200         pgcnt_t         pg_index;
2201         htable_t        *ht;
2202         uint_t          entry;
2203         x86pte_t        *pte_ptr;
2204         x86pte_t        old_pte;
2205 
2206         for (; va < eva; va += MMU_PAGESIZE) {
2207                 /*
2208                  * Get the PTE
2209                  */
2210                 pg_index = mmu_btop(va - mmu.kmap_addr);
2211                 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2212                 old_pte = GET_PTE(pte_ptr);
2213 
2214                 /*
2215                  * get the htable / entry
2216                  */
2217                 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2218                     >> LEVEL_SHIFT(1)];
2219                 entry = htable_va2entry(va, ht);
2220 
2221                 /*
2222                  * use mostly common code to unmap it.
2223                  */
2224                 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE);
2225         }
2226 }
2227 
2228 
2229 /*
2230  * unload a range of virtual address space (no callback)
2231  */
2232 void
2233 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2234 {
2235         uintptr_t va = (uintptr_t)addr;
2236 
2237         XPV_DISALLOW_MIGRATE();
2238         ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2239 
2240         /*
2241          * special case for performance.
2242          */
2243         if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2244                 ASSERT(hat == kas.a_hat);
2245                 hat_kmap_unload(addr, len, flags);
2246         } else {
2247                 hat_unload_callback(hat, addr, len, flags, NULL);
2248         }
2249         XPV_ALLOW_MIGRATE();
2250 }
2251 
2252 /*
2253  * Do the callbacks for ranges being unloaded.
2254  */
2255 typedef struct range_info {
2256         uintptr_t       rng_va;
2257         ulong_t         rng_cnt;
2258         level_t         rng_level;
2259 } range_info_t;
2260 
2261 /*
2262  * Invalidate the TLB, and perform the callback to the upper level VM system,
2263  * for the specified ranges of contiguous pages.
2264  */
2265 static void
2266 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, range_info_t *range)
2267 {
2268         while (cnt > 0) {
2269                 size_t len;
2270 
2271                 --cnt;
2272                 len = range[cnt].rng_cnt << LEVEL_SHIFT(range[cnt].rng_level);
2273                 hat_tlb_inval_range(hat, (uintptr_t)range[cnt].rng_va, len);
2274 
2275                 if (cb != NULL) {
2276                         cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2277                         cb->hcb_end_addr = cb->hcb_start_addr;
2278                         cb->hcb_end_addr += len;
2279                         cb->hcb_function(cb);
2280                 }
2281         }
2282 }
2283 
2284 /*
2285  * Unload a given range of addresses (has optional callback)
2286  *
2287  * Flags:
2288  * define       HAT_UNLOAD              0x00
2289  * define       HAT_UNLOAD_NOSYNC       0x02
2290  * define       HAT_UNLOAD_UNLOCK       0x04
2291  * define       HAT_UNLOAD_OTHER        0x08 - not used
2292  * define       HAT_UNLOAD_UNMAP        0x10 - same as HAT_UNLOAD
2293  */
2294 #define MAX_UNLOAD_CNT (8)
2295 void
2296 hat_unload_callback(
2297         hat_t           *hat,
2298         caddr_t         addr,
2299         size_t          len,
2300         uint_t          flags,
2301         hat_callback_t  *cb)
2302 {
2303         uintptr_t       vaddr = (uintptr_t)addr;
2304         uintptr_t       eaddr = vaddr + len;
2305         htable_t        *ht = NULL;
2306         uint_t          entry;
2307         uintptr_t       contig_va = (uintptr_t)-1L;
2308         range_info_t    r[MAX_UNLOAD_CNT];
2309         uint_t          r_cnt = 0;
2310         x86pte_t        old_pte;
2311 
2312         XPV_DISALLOW_MIGRATE();
2313         ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2314         ASSERT(IS_PAGEALIGNED(vaddr));
2315         ASSERT(IS_PAGEALIGNED(eaddr));
2316 
2317         /*
2318          * Special case a single page being unloaded for speed. This happens
2319          * quite frequently, COW faults after a fork() for example.
2320          */
2321         if (cb == NULL && len == MMU_PAGESIZE) {
2322                 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2323                 if (ht != NULL) {
2324                         if (PTE_ISVALID(old_pte)) {
2325                                 hat_pte_unmap(ht, entry, flags, old_pte,
2326                                     NULL, B_TRUE);
2327                         }
2328                         htable_release(ht);
2329                 }
2330                 XPV_ALLOW_MIGRATE();
2331                 return;
2332         }
2333 
2334         while (vaddr < eaddr) {
2335                 old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2336                 if (ht == NULL)
2337                         break;
2338 
2339                 ASSERT(!IN_VA_HOLE(vaddr));
2340 
2341                 if (vaddr < (uintptr_t)addr)
2342                         panic("hat_unload_callback(): unmap inside large page");
2343 
2344                 /*
2345                  * We'll do the call backs for contiguous ranges
2346                  */
2347                 if (vaddr != contig_va ||
2348                     (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2349                         if (r_cnt == MAX_UNLOAD_CNT) {
2350                                 handle_ranges(hat, cb, r_cnt, r);
2351                                 r_cnt = 0;
2352                         }
2353                         r[r_cnt].rng_va = vaddr;
2354                         r[r_cnt].rng_cnt = 0;
2355                         r[r_cnt].rng_level = ht->ht_level;
2356                         ++r_cnt;
2357                 }
2358 
2359                 /*
2360                  * Unload one mapping (for a single page) from the page tables.
2361                  * Note that we do not remove the mapping from the TLB yet,
2362                  * as indicated by the tlb=FALSE argument to hat_pte_unmap().
2363                  * handle_ranges() will clear the TLB entries with one call to
2364                  * hat_tlb_inval_range() per contiguous range.  This is
2365                  * safe because the page can not be reused until the
2366                  * callback is made (or we return).
2367                  */
2368                 entry = htable_va2entry(vaddr, ht);
2369                 hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE);
2370                 ASSERT(ht->ht_level <= mmu.max_page_level);
2371                 vaddr += LEVEL_SIZE(ht->ht_level);
2372                 contig_va = vaddr;
2373                 ++r[r_cnt - 1].rng_cnt;
2374         }
2375         if (ht)
2376                 htable_release(ht);
2377 
2378         /*
2379          * handle last range for callbacks
2380          */
2381         if (r_cnt > 0)
2382                 handle_ranges(hat, cb, r_cnt, r);
2383         XPV_ALLOW_MIGRATE();
2384 }
2385 
2386 /*
2387  * Invalidate a virtual address translation on a slave CPU during
2388  * panic() dumps.
2389  */
2390 void
2391 hat_flush_range(hat_t *hat, caddr_t va, size_t size)
2392 {
2393         ssize_t sz;
2394         caddr_t endva = va + size;
2395 
2396         while (va < endva) {
2397                 sz = hat_getpagesize(hat, va);
2398                 if (sz < 0) {
2399 #ifdef __xpv
2400                         xen_flush_tlb();
2401 #else
2402                         flush_all_tlb_entries();
2403 #endif
2404                         break;
2405                 }
2406 #ifdef __xpv
2407                 xen_flush_va(va);
2408 #else
2409                 mmu_tlbflush_entry(va);
2410 #endif
2411                 va += sz;
2412         }
2413 }
2414 
2415 /*
2416  * synchronize mapping with software data structures
2417  *
2418  * This interface is currently only used by the working set monitor
2419  * driver.
2420  */
2421 /*ARGSUSED*/
2422 void
2423 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2424 {
2425         uintptr_t       vaddr = (uintptr_t)addr;
2426         uintptr_t       eaddr = vaddr + len;
2427         htable_t        *ht = NULL;
2428         uint_t          entry;
2429         x86pte_t        pte;
2430         x86pte_t        save_pte;
2431         x86pte_t        new;
2432         page_t          *pp;
2433 
2434         ASSERT(!IN_VA_HOLE(vaddr));
2435         ASSERT(IS_PAGEALIGNED(vaddr));
2436         ASSERT(IS_PAGEALIGNED(eaddr));
2437         ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2438 
2439         XPV_DISALLOW_MIGRATE();
2440         for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2441 try_again:
2442                 pte = htable_walk(hat, &ht, &vaddr, eaddr);
2443                 if (ht == NULL)
2444                         break;
2445                 entry = htable_va2entry(vaddr, ht);
2446 
2447                 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2448                     PTE_GET(pte, PT_REF | PT_MOD) == 0)
2449                         continue;
2450 
2451                 /*
2452                  * We need to acquire the mapping list lock to protect
2453                  * against hat_pageunload(), hat_unload(), etc.
2454                  */
2455                 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2456                 if (pp == NULL)
2457                         break;
2458                 x86_hm_enter(pp);
2459                 save_pte = pte;
2460                 pte = x86pte_get(ht, entry);
2461                 if (pte != save_pte) {
2462                         x86_hm_exit(pp);
2463                         goto try_again;
2464                 }
2465                 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2466                     PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2467                         x86_hm_exit(pp);
2468                         continue;
2469                 }
2470 
2471                 /*
2472                  * Need to clear ref or mod bits. We may compete with
2473                  * hardware updating the R/M bits and have to try again.
2474                  */
2475                 if (flags == HAT_SYNC_ZERORM) {
2476                         new = pte;
2477                         PTE_CLR(new, PT_REF | PT_MOD);
2478                         pte = hati_update_pte(ht, entry, pte, new);
2479                         if (pte != 0) {
2480                                 x86_hm_exit(pp);
2481                                 goto try_again;
2482                         }
2483                 } else {
2484                         /*
2485                          * sync the PTE to the page_t
2486                          */
2487                         hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2488                 }
2489                 x86_hm_exit(pp);
2490         }
2491         if (ht)
2492                 htable_release(ht);
2493         XPV_ALLOW_MIGRATE();
2494 }
2495 
2496 /*
2497  * void hat_map(hat, addr, len, flags)
2498  */
2499 /*ARGSUSED*/
2500 void
2501 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2502 {
2503         /* does nothing */
2504 }
2505 
2506 /*
2507  * uint_t hat_getattr(hat, addr, *attr)
2508  *      returns attr for <hat,addr> in *attr.  returns 0 if there was a
2509  *      mapping and *attr is valid, nonzero if there was no mapping and
2510  *      *attr is not valid.
2511  */
2512 uint_t
2513 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2514 {
2515         uintptr_t       vaddr = ALIGN2PAGE(addr);
2516         htable_t        *ht = NULL;
2517         x86pte_t        pte;
2518 
2519         ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2520 
2521         if (IN_VA_HOLE(vaddr))
2522                 return ((uint_t)-1);
2523 
2524         ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2525         if (ht == NULL)
2526                 return ((uint_t)-1);
2527 
2528         if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2529                 htable_release(ht);
2530                 return ((uint_t)-1);
2531         }
2532 
2533         *attr = PROT_READ;
2534         if (PTE_GET(pte, PT_WRITABLE))
2535                 *attr |= PROT_WRITE;
2536         if (PTE_GET(pte, PT_USER))
2537                 *attr |= PROT_USER;
2538         if (!PTE_GET(pte, mmu.pt_nx))
2539                 *attr |= PROT_EXEC;
2540         if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2541                 *attr |= HAT_NOSYNC;
2542         htable_release(ht);
2543         return (0);
2544 }
2545 
2546 /*
2547  * hat_updateattr() applies the given attribute change to an existing mapping
2548  */
2549 #define HAT_LOAD_ATTR           1
2550 #define HAT_SET_ATTR            2
2551 #define HAT_CLR_ATTR            3
2552 
2553 static void
2554 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2555 {
2556         uintptr_t       vaddr = (uintptr_t)addr;
2557         uintptr_t       eaddr = (uintptr_t)addr + len;
2558         htable_t        *ht = NULL;
2559         uint_t          entry;
2560         x86pte_t        oldpte, newpte;
2561         page_t          *pp;
2562 
2563         XPV_DISALLOW_MIGRATE();
2564         ASSERT(IS_PAGEALIGNED(vaddr));
2565         ASSERT(IS_PAGEALIGNED(eaddr));
2566         ASSERT(hat == kas.a_hat ||
2567             AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2568         for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2569 try_again:
2570                 oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2571                 if (ht == NULL)
2572                         break;
2573                 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2574                         continue;
2575 
2576                 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2577                 if (pp == NULL)
2578                         continue;
2579                 x86_hm_enter(pp);
2580 
2581                 newpte = oldpte;
2582                 /*
2583                  * We found a page table entry in the desired range,
2584                  * figure out the new attributes.
2585                  */
2586                 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2587                         if ((attr & PROT_WRITE) &&
2588                             !PTE_GET(oldpte, PT_WRITABLE))
2589                                 newpte |= PT_WRITABLE;
2590 
2591                         if ((attr & HAT_NOSYNC) &&
2592                             PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2593                                 newpte |= PT_NOSYNC;
2594 
2595                         if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2596                                 newpte &= ~mmu.pt_nx;
2597                 }
2598 
2599                 if (what == HAT_LOAD_ATTR) {
2600                         if (!(attr & PROT_WRITE) &&
2601                             PTE_GET(oldpte, PT_WRITABLE))
2602                                 newpte &= ~PT_WRITABLE;
2603 
2604                         if (!(attr & HAT_NOSYNC) &&
2605                             PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2606                                 newpte &= ~PT_SOFTWARE;
2607 
2608                         if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2609                                 newpte |= mmu.pt_nx;
2610                 }
2611 
2612                 if (what == HAT_CLR_ATTR) {
2613                         if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2614                                 newpte &= ~PT_WRITABLE;
2615 
2616                         if ((attr & HAT_NOSYNC) &&
2617                             PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2618                                 newpte &= ~PT_SOFTWARE;
2619 
2620                         if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2621                                 newpte |= mmu.pt_nx;
2622                 }
2623 
2624                 /*
2625                  * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2626                  * x86pte_set() depends on this.
2627                  */
2628                 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2629                         newpte |= PT_REF | PT_MOD;
2630 
2631                 /*
2632                  * what about PROT_READ or others? this code only handles:
2633                  * EXEC, WRITE, NOSYNC
2634                  */
2635 
2636                 /*
2637                  * If new PTE really changed, update the table.
2638                  */
2639                 if (newpte != oldpte) {
2640                         entry = htable_va2entry(vaddr, ht);
2641                         oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2642                         if (oldpte != 0) {
2643                                 x86_hm_exit(pp);
2644                                 goto try_again;
2645                         }
2646                 }
2647                 x86_hm_exit(pp);
2648         }
2649         if (ht)
2650                 htable_release(ht);
2651         XPV_ALLOW_MIGRATE();
2652 }
2653 
2654 /*
2655  * Various wrappers for hat_updateattr()
2656  */
2657 void
2658 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2659 {
2660         ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2661         hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2662 }
2663 
2664 void
2665 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2666 {
2667         ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2668         hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2669 }
2670 
2671 void
2672 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2673 {
2674         ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2675         hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2676 }
2677 
2678 void
2679 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2680 {
2681         ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2682         hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2683 }
2684 
2685 /*
2686  * size_t hat_getpagesize(hat, addr)
2687  *      returns pagesize in bytes for <hat, addr>. returns -1 of there is
2688  *      no mapping. This is an advisory call.
2689  */
2690 ssize_t
2691 hat_getpagesize(hat_t *hat, caddr_t addr)
2692 {
2693         uintptr_t       vaddr = ALIGN2PAGE(addr);
2694         htable_t        *ht;
2695         size_t          pagesize;
2696 
2697         ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2698         if (IN_VA_HOLE(vaddr))
2699                 return (-1);
2700         ht = htable_getpage(hat, vaddr, NULL);
2701         if (ht == NULL)
2702                 return (-1);
2703         pagesize = LEVEL_SIZE(ht->ht_level);
2704         htable_release(ht);
2705         return (pagesize);
2706 }
2707 
2708 
2709 
2710 /*
2711  * pfn_t hat_getpfnum(hat, addr)
2712  *      returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2713  */
2714 pfn_t
2715 hat_getpfnum(hat_t *hat, caddr_t addr)
2716 {
2717         uintptr_t       vaddr = ALIGN2PAGE(addr);
2718         htable_t        *ht;
2719         uint_t          entry;
2720         pfn_t           pfn = PFN_INVALID;
2721 
2722         ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2723         if (khat_running == 0)
2724                 return (PFN_INVALID);
2725 
2726         if (IN_VA_HOLE(vaddr))
2727                 return (PFN_INVALID);
2728 
2729         XPV_DISALLOW_MIGRATE();
2730         /*
2731          * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2732          * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2733          * this up.
2734          */
2735         if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2736                 x86pte_t pte;
2737                 pgcnt_t pg_index;
2738 
2739                 pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2740                 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2741                 if (PTE_ISVALID(pte))
2742                         /*LINTED [use of constant 0 causes a lint warning] */
2743                         pfn = PTE2PFN(pte, 0);
2744                 XPV_ALLOW_MIGRATE();
2745                 return (pfn);
2746         }
2747 
2748         ht = htable_getpage(hat, vaddr, &entry);
2749         if (ht == NULL) {
2750                 XPV_ALLOW_MIGRATE();
2751                 return (PFN_INVALID);
2752         }
2753         ASSERT(vaddr >= ht->ht_vaddr);
2754         ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2755         pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2756         if (ht->ht_level > 0)
2757                 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2758         htable_release(ht);
2759         XPV_ALLOW_MIGRATE();
2760         return (pfn);
2761 }
2762 
2763 /*
2764  * int hat_probe(hat, addr)
2765  *      return 0 if no valid mapping is present.  Faster version
2766  *      of hat_getattr in certain architectures.
2767  */
2768 int
2769 hat_probe(hat_t *hat, caddr_t addr)
2770 {
2771         uintptr_t       vaddr = ALIGN2PAGE(addr);
2772         uint_t          entry;
2773         htable_t        *ht;
2774         pgcnt_t         pg_off;
2775 
2776         ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2777         ASSERT(hat == kas.a_hat ||
2778             AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2779         if (IN_VA_HOLE(vaddr))
2780                 return (0);
2781 
2782         /*
2783          * Most common use of hat_probe is from segmap. We special case it
2784          * for performance.
2785          */
2786         if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2787                 pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2788                 if (mmu.pae_hat)
2789                         return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2790                 else
2791                         return (PTE_ISVALID(
2792                             ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2793         }
2794 
2795         ht = htable_getpage(hat, vaddr, &entry);
2796         htable_release(ht);
2797         return (ht != NULL);
2798 }
2799 
2800 /*
2801  * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2802  */
2803 static int
2804 is_it_dism(hat_t *hat, caddr_t va)
2805 {
2806         struct seg *seg;
2807         struct shm_data *shmd;
2808         struct spt_data *sptd;
2809 
2810         seg = as_findseg(hat->hat_as, va, 0);
2811         ASSERT(seg != NULL);
2812         ASSERT(seg->s_base <= va);
2813         shmd = (struct shm_data *)seg->s_data;
2814         ASSERT(shmd != NULL);
2815         sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2816         ASSERT(sptd != NULL);
2817         if (sptd->spt_flags & SHM_PAGEABLE)
2818                 return (1);
2819         return (0);
2820 }
2821 
2822 /*
2823  * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2824  * except that we use the ism_hat's existing mappings to determine the pages
2825  * and protections to use for this hat. If we find a full properly aligned
2826  * and sized pagetable, we will attempt to share the pagetable itself.
2827  */
2828 /*ARGSUSED*/
2829 int
2830 hat_share(
2831         hat_t           *hat,
2832         caddr_t         addr,
2833         hat_t           *ism_hat,
2834         caddr_t         src_addr,
2835         size_t          len,    /* almost useless value, see below.. */
2836         uint_t          ismszc)
2837 {
2838         uintptr_t       vaddr_start = (uintptr_t)addr;
2839         uintptr_t       vaddr;
2840         uintptr_t       eaddr = vaddr_start + len;
2841         uintptr_t       ism_addr_start = (uintptr_t)src_addr;
2842         uintptr_t       ism_addr = ism_addr_start;
2843         uintptr_t       e_ism_addr = ism_addr + len;
2844         htable_t        *ism_ht = NULL;
2845         htable_t        *ht;
2846         x86pte_t        pte;
2847         page_t          *pp;
2848         pfn_t           pfn;
2849         level_t         l;
2850         pgcnt_t         pgcnt;
2851         uint_t          prot;
2852         int             is_dism;
2853         int             flags;
2854 
2855         /*
2856          * We might be asked to share an empty DISM hat by as_dup()
2857          */
2858         ASSERT(hat != kas.a_hat);
2859         ASSERT(eaddr <= _userlimit);
2860         if (!(ism_hat->hat_flags & HAT_SHARED)) {
2861                 ASSERT(hat_get_mapped_size(ism_hat) == 0);
2862                 return (0);
2863         }
2864         XPV_DISALLOW_MIGRATE();
2865 
2866         /*
2867          * The SPT segment driver often passes us a size larger than there are
2868          * valid mappings. That's because it rounds the segment size up to a
2869          * large pagesize, even if the actual memory mapped by ism_hat is less.
2870          */
2871         ASSERT(IS_PAGEALIGNED(vaddr_start));
2872         ASSERT(IS_PAGEALIGNED(ism_addr_start));
2873         ASSERT(ism_hat->hat_flags & HAT_SHARED);
2874         is_dism = is_it_dism(hat, addr);
2875         while (ism_addr < e_ism_addr) {
2876                 /*
2877                  * use htable_walk to get the next valid ISM mapping
2878                  */
2879                 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2880                 if (ism_ht == NULL)
2881                         break;
2882 
2883                 /*
2884                  * First check to see if we already share the page table.
2885                  */
2886                 l = ism_ht->ht_level;
2887                 vaddr = vaddr_start + (ism_addr - ism_addr_start);
2888                 ht = htable_lookup(hat, vaddr, l);
2889                 if (ht != NULL) {
2890                         if (ht->ht_flags & HTABLE_SHARED_PFN)
2891                                 goto shared;
2892                         htable_release(ht);
2893                         goto not_shared;
2894                 }
2895 
2896                 /*
2897                  * Can't ever share top table.
2898                  */
2899                 if (l == mmu.max_level)
2900                         goto not_shared;
2901 
2902                 /*
2903                  * Avoid level mismatches later due to DISM faults.
2904                  */
2905                 if (is_dism && l > 0)
2906                         goto not_shared;
2907 
2908                 /*
2909                  * addresses and lengths must align
2910                  * table must be fully populated
2911                  * no lower level page tables
2912                  */
2913                 if (ism_addr != ism_ht->ht_vaddr ||
2914                     (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2915                         goto not_shared;
2916 
2917                 /*
2918                  * The range of address space must cover a full table.
2919                  */
2920                 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
2921                         goto not_shared;
2922 
2923                 /*
2924                  * All entries in the ISM page table must be leaf PTEs.
2925                  */
2926                 if (l > 0) {
2927                         int e;
2928 
2929                         /*
2930                          * We know the 0th is from htable_walk() above.
2931                          */
2932                         for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
2933                                 x86pte_t pte;
2934                                 pte = x86pte_get(ism_ht, e);
2935                                 if (!PTE_ISPAGE(pte, l))
2936                                         goto not_shared;
2937                         }
2938                 }
2939 
2940                 /*
2941                  * share the page table
2942                  */
2943                 ht = htable_create(hat, vaddr, l, ism_ht);
2944 shared:
2945                 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
2946                 ASSERT(ht->ht_shares == ism_ht);
2947                 hat->hat_ism_pgcnt +=
2948                     (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
2949                     (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
2950                 ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
2951                 htable_release(ht);
2952                 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
2953                 htable_release(ism_ht);
2954                 ism_ht = NULL;
2955                 continue;
2956 
2957 not_shared:
2958                 /*
2959                  * Unable to share the page table. Instead we will
2960                  * create new mappings from the values in the ISM mappings.
2961                  * Figure out what level size mappings to use;
2962                  */
2963                 for (l = ism_ht->ht_level; l > 0; --l) {
2964                         if (LEVEL_SIZE(l) <= eaddr - vaddr &&
2965                             (vaddr & LEVEL_OFFSET(l)) == 0)
2966                                 break;
2967                 }
2968 
2969                 /*
2970                  * The ISM mapping might be larger than the share area,
2971                  * be careful to truncate it if needed.
2972                  */
2973                 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
2974                         pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
2975                 } else {
2976                         pgcnt = mmu_btop(eaddr - vaddr);
2977                         l = 0;
2978                 }
2979 
2980                 pfn = PTE2PFN(pte, ism_ht->ht_level);
2981                 ASSERT(pfn != PFN_INVALID);
2982                 while (pgcnt > 0) {
2983                         /*
2984                          * Make a new pte for the PFN for this level.
2985                          * Copy protections for the pte from the ISM pte.
2986                          */
2987                         pp = page_numtopp_nolock(pfn);
2988                         ASSERT(pp != NULL);
2989 
2990                         prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
2991                         if (PTE_GET(pte, PT_WRITABLE))
2992                                 prot |= PROT_WRITE;
2993                         if (!PTE_GET(pte, PT_NX))
2994                                 prot |= PROT_EXEC;
2995 
2996                         flags = HAT_LOAD;
2997                         if (!is_dism)
2998                                 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
2999                         while (hati_load_common(hat, vaddr, pp, prot, flags,
3000                             l, pfn) != 0) {
3001                                 if (l == 0)
3002                                         panic("hati_load_common() failure");
3003                                 --l;
3004                         }
3005 
3006                         vaddr += LEVEL_SIZE(l);
3007                         ism_addr += LEVEL_SIZE(l);
3008                         pfn += mmu_btop(LEVEL_SIZE(l));
3009                         pgcnt -= mmu_btop(LEVEL_SIZE(l));
3010                 }
3011         }
3012         if (ism_ht != NULL)
3013                 htable_release(ism_ht);
3014         XPV_ALLOW_MIGRATE();
3015         return (0);
3016 }
3017 
3018 
3019 /*
3020  * hat_unshare() is similar to hat_unload_callback(), but
3021  * we have to look for empty shared pagetables. Note that
3022  * hat_unshare() is always invoked against an entire segment.
3023  */
3024 /*ARGSUSED*/
3025 void
3026 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3027 {
3028         uint64_t        vaddr = (uintptr_t)addr;
3029         uintptr_t       eaddr = vaddr + len;
3030         htable_t        *ht = NULL;
3031         uint_t          need_demaps = 0;
3032         int             flags = HAT_UNLOAD_UNMAP;
3033         level_t         l;
3034 
3035         ASSERT(hat != kas.a_hat);
3036         ASSERT(eaddr <= _userlimit);
3037         ASSERT(IS_PAGEALIGNED(vaddr));
3038         ASSERT(IS_PAGEALIGNED(eaddr));
3039         XPV_DISALLOW_MIGRATE();
3040 
3041         /*
3042          * First go through and remove any shared pagetables.
3043          *
3044          * Note that it's ok to delay the TLB shootdown till the entire range is
3045          * finished, because if hat_pageunload() were to unload a shared
3046          * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3047          */
3048         l = mmu.max_page_level;
3049         if (l == mmu.max_level)
3050                 --l;
3051         for (; l >= 0; --l) {
3052                 for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3053                     vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3054                         ASSERT(!IN_VA_HOLE(vaddr));
3055                         /*
3056                          * find a pagetable that maps the current address
3057                          */
3058                         ht = htable_lookup(hat, vaddr, l);
3059                         if (ht == NULL)
3060                                 continue;
3061                         if (ht->ht_flags & HTABLE_SHARED_PFN) {
3062                                 /*
3063                                  * clear page count, set valid_cnt to 0,
3064                                  * let htable_release() finish the job
3065                                  */
3066                                 hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3067                                     (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3068                                 ht->ht_valid_cnt = 0;
3069                                 need_demaps = 1;
3070                         }
3071                         htable_release(ht);
3072                 }
3073         }
3074 
3075         /*
3076          * flush the TLBs - since we're probably dealing with MANY mappings
3077          * we do just one CR3 reload.
3078          */
3079         if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3080                 hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3081 
3082         /*
3083          * Now go back and clean up any unaligned mappings that
3084          * couldn't share pagetables.
3085          */
3086         if (!is_it_dism(hat, addr))
3087                 flags |= HAT_UNLOAD_UNLOCK;
3088         hat_unload(hat, addr, len, flags);
3089         XPV_ALLOW_MIGRATE();
3090 }
3091 
3092 
3093 /*
3094  * hat_reserve() does nothing
3095  */
3096 /*ARGSUSED*/
3097 void
3098 hat_reserve(struct as *as, caddr_t addr, size_t len)
3099 {
3100 }
3101 
3102 
3103 /*
3104  * Called when all mappings to a page should have write permission removed.
3105  * Mostly stolen from hat_pagesync()
3106  */
3107 static void
3108 hati_page_clrwrt(struct page *pp)
3109 {
3110         hment_t         *hm = NULL;
3111         htable_t        *ht;
3112         uint_t          entry;
3113         x86pte_t        old;
3114         x86pte_t        new;
3115         uint_t          pszc = 0;
3116 
3117         XPV_DISALLOW_MIGRATE();
3118 next_size:
3119         /*
3120          * walk thru the mapping list clearing write permission
3121          */
3122         x86_hm_enter(pp);
3123         while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3124                 if (ht->ht_level < pszc)
3125                         continue;
3126                 old = x86pte_get(ht, entry);
3127 
3128                 for (;;) {
3129                         /*
3130                          * Is this mapping of interest?
3131                          */
3132                         if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3133                             PTE_GET(old, PT_WRITABLE) == 0)
3134                                 break;
3135 
3136                         /*
3137                          * Clear ref/mod writable bits. This requires cross
3138                          * calls to ensure any executing TLBs see cleared bits.
3139                          */
3140                         new = old;
3141                         PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3142                         old = hati_update_pte(ht, entry, old, new);
3143                         if (old != 0)
3144                                 continue;
3145 
3146                         break;
3147                 }
3148         }
3149         x86_hm_exit(pp);
3150         while (pszc < pp->p_szc) {
3151                 page_t *tpp;
3152                 pszc++;
3153                 tpp = PP_GROUPLEADER(pp, pszc);
3154                 if (pp != tpp) {
3155                         pp = tpp;
3156                         goto next_size;
3157                 }
3158         }
3159         XPV_ALLOW_MIGRATE();
3160 }
3161 
3162 /*
3163  * void hat_page_setattr(pp, flag)
3164  * void hat_page_clrattr(pp, flag)
3165  *      used to set/clr ref/mod bits.
3166  */
3167 void
3168 hat_page_setattr(struct page *pp, uint_t flag)
3169 {
3170         vnode_t         *vp = pp->p_vnode;
3171         kmutex_t        *vphm = NULL;
3172         page_t          **listp;
3173         int             noshuffle;
3174 
3175         noshuffle = flag & P_NSH;
3176         flag &= ~P_NSH;
3177 
3178         if (PP_GETRM(pp, flag) == flag)
3179                 return;
3180 
3181         if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3182             !noshuffle) {
3183                 vphm = page_vnode_mutex(vp);
3184                 mutex_enter(vphm);
3185         }
3186 
3187         PP_SETRM(pp, flag);
3188 
3189         if (vphm != NULL) {
3190 
3191                 /*
3192                  * Some File Systems examine v_pages for NULL w/o
3193                  * grabbing the vphm mutex. Must not let it become NULL when
3194                  * pp is the only page on the list.
3195                  */
3196                 if (pp->p_vpnext != pp) {
3197                         page_vpsub(&vp->v_pages, pp);
3198                         if (vp->v_pages != NULL)
3199                                 listp = &vp->v_pages->p_vpprev->p_vpnext;
3200                         else
3201                                 listp = &vp->v_pages;
3202                         page_vpadd(listp, pp);
3203                 }
3204                 mutex_exit(vphm);
3205         }
3206 }
3207 
3208 void
3209 hat_page_clrattr(struct page *pp, uint_t flag)
3210 {
3211         vnode_t         *vp = pp->p_vnode;
3212         ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3213 
3214         /*
3215          * Caller is expected to hold page's io lock for VMODSORT to work
3216          * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3217          * bit is cleared.
3218          * We don't have assert to avoid tripping some existing third party
3219          * code. The dirty page is moved back to top of the v_page list
3220          * after IO is done in pvn_write_done().
3221          */
3222         PP_CLRRM(pp, flag);
3223 
3224         if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3225 
3226                 /*
3227                  * VMODSORT works by removing write permissions and getting
3228                  * a fault when a page is made dirty. At this point
3229                  * we need to remove write permission from all mappings
3230                  * to this page.
3231                  */
3232                 hati_page_clrwrt(pp);
3233         }
3234 }
3235 
3236 /*
3237  *      If flag is specified, returns 0 if attribute is disabled
3238  *      and non zero if enabled.  If flag specifes multiple attributes
3239  *      then returns 0 if ALL attributes are disabled.  This is an advisory
3240  *      call.
3241  */
3242 uint_t
3243 hat_page_getattr(struct page *pp, uint_t flag)
3244 {
3245         return (PP_GETRM(pp, flag));
3246 }
3247 
3248 
3249 /*
3250  * common code used by hat_pageunload() and hment_steal()
3251  */
3252 hment_t *
3253 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3254 {
3255         x86pte_t old_pte;
3256         pfn_t pfn = pp->p_pagenum;
3257         hment_t *hm;
3258 
3259         /*
3260          * We need to acquire a hold on the htable in order to
3261          * do the invalidate. We know the htable must exist, since
3262          * unmap's don't release the htable until after removing any
3263          * hment. Having x86_hm_enter() keeps that from proceeding.
3264          */
3265         htable_acquire(ht);
3266 
3267         /*
3268          * Invalidate the PTE and remove the hment.
3269          */
3270         old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE);
3271         if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3272                 panic("x86pte_inval() failure found PTE = " FMT_PTE
3273                     " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3274                     old_pte, pfn, (uintptr_t)ht, entry);
3275         }
3276 
3277         /*
3278          * Clean up all the htable information for this mapping
3279          */
3280         ASSERT(ht->ht_valid_cnt > 0);
3281         HTABLE_DEC(ht->ht_valid_cnt);
3282         PGCNT_DEC(ht->ht_hat, ht->ht_level);
3283 
3284         /*
3285          * sync ref/mod bits to the page_t
3286          */
3287         if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3288                 hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3289 
3290         /*
3291          * Remove the mapping list entry for this page.
3292          */
3293         hm = hment_remove(pp, ht, entry);
3294 
3295         /*
3296          * drop the mapping list lock so that we might free the
3297          * hment and htable.
3298          */
3299         x86_hm_exit(pp);
3300         htable_release(ht);
3301         return (hm);
3302 }
3303 
3304 extern int      vpm_enable;
3305 /*
3306  * Unload all translations to a page. If the page is a subpage of a large
3307  * page, the large page mappings are also removed.
3308  *
3309  * The forceflags are unused.
3310  */
3311 
3312 /*ARGSUSED*/
3313 static int
3314 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3315 {
3316         page_t          *cur_pp = pp;
3317         hment_t         *hm;
3318         hment_t         *prev;
3319         htable_t        *ht;
3320         uint_t          entry;
3321         level_t         level;
3322 
3323         XPV_DISALLOW_MIGRATE();
3324 
3325         /*
3326          * prevent recursion due to kmem_free()
3327          */
3328         ++curthread->t_hatdepth;
3329         ASSERT(curthread->t_hatdepth < 16);
3330 
3331 #if defined(__amd64)
3332         /*
3333          * clear the vpm ref.
3334          */
3335         if (vpm_enable) {
3336                 pp->p_vpmref = 0;
3337         }
3338 #endif
3339         /*
3340          * The loop with next_size handles pages with multiple pagesize mappings
3341          */
3342 next_size:
3343         for (;;) {
3344 
3345                 /*
3346                  * Get a mapping list entry
3347                  */
3348                 x86_hm_enter(cur_pp);
3349                 for (prev = NULL; ; prev = hm) {
3350                         hm = hment_walk(cur_pp, &ht, &entry, prev);
3351                         if (hm == NULL) {
3352                                 x86_hm_exit(cur_pp);
3353 
3354                                 /*
3355                                  * If not part of a larger page, we're done.
3356                                  */
3357                                 if (cur_pp->p_szc <= pg_szcd) {
3358                                         ASSERT(curthread->t_hatdepth > 0);
3359                                         --curthread->t_hatdepth;
3360                                         XPV_ALLOW_MIGRATE();
3361                                         return (0);
3362                                 }
3363 
3364                                 /*
3365                                  * Else check the next larger page size.
3366                                  * hat_page_demote() may decrease p_szc
3367                                  * but that's ok we'll just take an extra
3368                                  * trip discover there're no larger mappings
3369                                  * and return.
3370                                  */
3371                                 ++pg_szcd;
3372                                 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3373                                 goto next_size;
3374                         }
3375 
3376                         /*
3377                          * If this mapping size matches, remove it.
3378                          */
3379                         level = ht->ht_level;
3380                         if (level == pg_szcd)
3381                                 break;
3382                 }
3383 
3384                 /*
3385                  * Remove the mapping list entry for this page.
3386                  * Note this does the x86_hm_exit() for us.
3387                  */
3388                 hm = hati_page_unmap(cur_pp, ht, entry);
3389                 if (hm != NULL)
3390                         hment_free(hm);
3391         }
3392 }
3393 
3394 int
3395 hat_pageunload(struct page *pp, uint_t forceflag)
3396 {
3397         ASSERT(PAGE_EXCL(pp));
3398         return (hati_pageunload(pp, 0, forceflag));
3399 }
3400 
3401 /*
3402  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3403  * page level that included pp.
3404  *
3405  * pp must be locked EXCL. Even though no other constituent pages are locked
3406  * it's legal to unload large mappings to pp because all constituent pages of
3407  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3408  * lock on one of constituent pages none of the large mappings to pp are
3409  * locked.
3410  *
3411  * Change (always decrease) p_szc field starting from the last constituent
3412  * page and ending with root constituent page so that root's pszc always shows
3413  * the area where hat_page_demote() may be active.
3414  *
3415  * This mechanism is only used for file system pages where it's not always
3416  * possible to get EXCL locks on all constituent pages to demote the size code
3417  * (as is done for anonymous or kernel large pages).
3418  */
3419 void
3420 hat_page_demote(page_t *pp)
3421 {
3422         uint_t          pszc;
3423         uint_t          rszc;
3424         uint_t          szc;
3425         page_t          *rootpp;
3426         page_t          *firstpp;
3427         page_t          *lastpp;
3428         pgcnt_t         pgcnt;
3429 
3430         ASSERT(PAGE_EXCL(pp));
3431         ASSERT(!PP_ISFREE(pp));
3432         ASSERT(page_szc_lock_assert(pp));
3433 
3434         if (pp->p_szc == 0)
3435                 return;
3436 
3437         rootpp = PP_GROUPLEADER(pp, 1);
3438         (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3439 
3440         /*
3441          * all large mappings to pp are gone
3442          * and no new can be setup since pp is locked exclusively.
3443          *
3444          * Lock the root to make sure there's only one hat_page_demote()
3445          * outstanding within the area of this root's pszc.
3446          *
3447          * Second potential hat_page_demote() is already eliminated by upper
3448          * VM layer via page_szc_lock() but we don't rely on it and use our
3449          * own locking (so that upper layer locking can be changed without
3450          * assumptions that hat depends on upper layer VM to prevent multiple
3451          * hat_page_demote() to be issued simultaneously to the same large
3452          * page).
3453          */
3454 again:
3455         pszc = pp->p_szc;
3456         if (pszc == 0)
3457                 return;
3458         rootpp = PP_GROUPLEADER(pp, pszc);
3459         x86_hm_enter(rootpp);
3460         /*
3461          * If root's p_szc is different from pszc we raced with another
3462          * hat_page_demote().  Drop the lock and try to find the root again.
3463          * If root's p_szc is greater than pszc previous hat_page_demote() is
3464          * not done yet.  Take and release mlist lock of root's root to wait
3465          * for previous hat_page_demote() to complete.
3466          */
3467         if ((rszc = rootpp->p_szc) != pszc) {
3468                 x86_hm_exit(rootpp);
3469                 if (rszc > pszc) {
3470                         /* p_szc of a locked non free page can't increase */
3471                         ASSERT(pp != rootpp);
3472 
3473                         rootpp = PP_GROUPLEADER(rootpp, rszc);
3474                         x86_hm_enter(rootpp);
3475                         x86_hm_exit(rootpp);
3476                 }
3477                 goto again;
3478         }
3479         ASSERT(pp->p_szc == pszc);
3480 
3481         /*
3482          * Decrement by 1 p_szc of every constituent page of a region that
3483          * covered pp. For example if original szc is 3 it gets changed to 2
3484          * everywhere except in region 2 that covered pp. Region 2 that
3485          * covered pp gets demoted to 1 everywhere except in region 1 that
3486          * covered pp. The region 1 that covered pp is demoted to region
3487          * 0. It's done this way because from region 3 we removed level 3
3488          * mappings, from region 2 that covered pp we removed level 2 mappings
3489          * and from region 1 that covered pp we removed level 1 mappings.  All
3490          * changes are done from from high pfn's to low pfn's so that roots
3491          * are changed last allowing one to know the largest region where
3492          * hat_page_demote() is stil active by only looking at the root page.
3493          *
3494          * This algorithm is implemented in 2 while loops. First loop changes
3495          * p_szc of pages to the right of pp's level 1 region and second
3496          * loop changes p_szc of pages of level 1 region that covers pp
3497          * and all pages to the left of level 1 region that covers pp.
3498          * In the first loop p_szc keeps dropping with every iteration
3499          * and in the second loop it keeps increasing with every iteration.
3500          *
3501          * First loop description: Demote pages to the right of pp outside of
3502          * level 1 region that covers pp.  In every iteration of the while
3503          * loop below find the last page of szc region and the first page of
3504          * (szc - 1) region that is immediately to the right of (szc - 1)
3505          * region that covers pp.  From last such page to first such page
3506          * change every page's szc to szc - 1. Decrement szc and continue
3507          * looping until szc is 1. If pp belongs to the last (szc - 1) region
3508          * of szc region skip to the next iteration.
3509          */
3510         szc = pszc;
3511         while (szc > 1) {
3512                 lastpp = PP_GROUPLEADER(pp, szc);
3513                 pgcnt = page_get_pagecnt(szc);
3514                 lastpp += pgcnt - 1;
3515                 firstpp = PP_GROUPLEADER(pp, (szc - 1));
3516                 pgcnt = page_get_pagecnt(szc - 1);
3517                 if (lastpp - firstpp < pgcnt) {
3518                         szc--;
3519                         continue;
3520                 }
3521                 firstpp += pgcnt;
3522                 while (lastpp != firstpp) {
3523                         ASSERT(lastpp->p_szc == pszc);
3524                         lastpp->p_szc = szc - 1;
3525                         lastpp--;
3526                 }
3527                 firstpp->p_szc = szc - 1;
3528                 szc--;
3529         }
3530 
3531         /*
3532          * Second loop description:
3533          * First iteration changes p_szc to 0 of every
3534          * page of level 1 region that covers pp.
3535          * Subsequent iterations find last page of szc region
3536          * immediately to the left of szc region that covered pp
3537          * and first page of (szc + 1) region that covers pp.
3538          * From last to first page change p_szc of every page to szc.
3539          * Increment szc and continue looping until szc is pszc.
3540          * If pp belongs to the fist szc region of (szc + 1) region
3541          * skip to the next iteration.
3542          *
3543          */
3544         szc = 0;
3545         while (szc < pszc) {
3546                 firstpp = PP_GROUPLEADER(pp, (szc + 1));
3547                 if (szc == 0) {
3548                         pgcnt = page_get_pagecnt(1);
3549                         lastpp = firstpp + (pgcnt - 1);
3550                 } else {
3551                         lastpp = PP_GROUPLEADER(pp, szc);
3552                         if (firstpp == lastpp) {
3553                                 szc++;
3554                                 continue;
3555                         }
3556                         lastpp--;
3557                         pgcnt = page_get_pagecnt(szc);
3558                 }
3559                 while (lastpp != firstpp) {
3560                         ASSERT(lastpp->p_szc == pszc);
3561                         lastpp->p_szc = szc;
3562                         lastpp--;
3563                 }
3564                 firstpp->p_szc = szc;
3565                 if (firstpp == rootpp)
3566                         break;
3567                 szc++;
3568         }
3569         x86_hm_exit(rootpp);
3570 }
3571 
3572 /*
3573  * get hw stats from hardware into page struct and reset hw stats
3574  * returns attributes of page
3575  * Flags for hat_pagesync, hat_getstat, hat_sync
3576  *
3577  * define       HAT_SYNC_ZERORM         0x01
3578  *
3579  * Additional flags for hat_pagesync
3580  *
3581  * define       HAT_SYNC_STOPON_REF     0x02
3582  * define       HAT_SYNC_STOPON_MOD     0x04
3583  * define       HAT_SYNC_STOPON_RM      0x06
3584  * define       HAT_SYNC_STOPON_SHARED  0x08
3585  */
3586 uint_t
3587 hat_pagesync(struct page *pp, uint_t flags)
3588 {
3589         hment_t         *hm = NULL;
3590         htable_t        *ht;
3591         uint_t          entry;
3592         x86pte_t        old, save_old;
3593         x86pte_t        new;
3594         uchar_t         nrmbits = P_REF|P_MOD|P_RO;
3595         extern ulong_t  po_share;
3596         page_t          *save_pp = pp;
3597         uint_t          pszc = 0;
3598 
3599         ASSERT(PAGE_LOCKED(pp) || panicstr);
3600 
3601         if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3602                 return (pp->p_nrm & nrmbits);
3603 
3604         if ((flags & HAT_SYNC_ZERORM) == 0) {
3605 
3606                 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3607                         return (pp->p_nrm & nrmbits);
3608 
3609                 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3610                         return (pp->p_nrm & nrmbits);
3611 
3612                 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3613                     hat_page_getshare(pp) > po_share) {
3614                         if (PP_ISRO(pp))
3615                                 PP_SETREF(pp);
3616                         return (pp->p_nrm & nrmbits);
3617                 }
3618         }
3619 
3620         XPV_DISALLOW_MIGRATE();
3621 next_size:
3622         /*
3623          * walk thru the mapping list syncing (and clearing) ref/mod bits.
3624          */
3625         x86_hm_enter(pp);
3626         while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3627                 if (ht->ht_level < pszc)
3628                         continue;
3629                 old = x86pte_get(ht, entry);
3630 try_again:
3631 
3632                 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3633 
3634                 if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3635                         continue;
3636 
3637                 save_old = old;
3638                 if ((flags & HAT_SYNC_ZERORM) != 0) {
3639 
3640                         /*
3641                          * Need to clear ref or mod bits. Need to demap
3642                          * to make sure any executing TLBs see cleared bits.
3643                          */
3644                         new = old;
3645                         PTE_CLR(new, PT_REF | PT_MOD);
3646                         old = hati_update_pte(ht, entry, old, new);
3647                         if (old != 0)
3648                                 goto try_again;
3649 
3650                         old = save_old;
3651                 }
3652 
3653                 /*
3654                  * Sync the PTE
3655                  */
3656                 if (!(flags & HAT_SYNC_ZERORM) &&
3657                     PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3658                         hati_sync_pte_to_page(pp, old, ht->ht_level);
3659 
3660                 /*
3661                  * can stop short if we found a ref'd or mod'd page
3662                  */
3663                 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3664                     (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3665                         x86_hm_exit(pp);
3666                         goto done;
3667                 }
3668         }
3669         x86_hm_exit(pp);
3670         while (pszc < pp->p_szc) {
3671                 page_t *tpp;
3672                 pszc++;
3673                 tpp = PP_GROUPLEADER(pp, pszc);
3674                 if (pp != tpp) {
3675                         pp = tpp;
3676                         goto next_size;
3677                 }
3678         }
3679 done:
3680         XPV_ALLOW_MIGRATE();
3681         return (save_pp->p_nrm & nrmbits);
3682 }
3683 
3684 /*
3685  * returns approx number of mappings to this pp.  A return of 0 implies
3686  * there are no mappings to the page.
3687  */
3688 ulong_t
3689 hat_page_getshare(page_t *pp)
3690 {
3691         uint_t cnt;
3692         cnt = hment_mapcnt(pp);
3693 #if defined(__amd64)
3694         if (vpm_enable && pp->p_vpmref) {
3695                 cnt += 1;
3696         }
3697 #endif
3698         return (cnt);
3699 }
3700 
3701 /*
3702  * Return 1 the number of mappings exceeds sh_thresh. Return 0
3703  * otherwise.
3704  */
3705 int
3706 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3707 {
3708         return (hat_page_getshare(pp) > sh_thresh);
3709 }
3710 
3711 /*
3712  * hat_softlock isn't supported anymore
3713  */
3714 /*ARGSUSED*/
3715 faultcode_t
3716 hat_softlock(
3717         hat_t *hat,
3718         caddr_t addr,
3719         size_t *len,
3720         struct page **page_array,
3721         uint_t flags)
3722 {
3723         return (FC_NOSUPPORT);
3724 }
3725 
3726 
3727 
3728 /*
3729  * Routine to expose supported HAT features to platform independent code.
3730  */
3731 /*ARGSUSED*/
3732 int
3733 hat_supported(enum hat_features feature, void *arg)
3734 {
3735         switch (feature) {
3736 
3737         case HAT_SHARED_PT:     /* this is really ISM */
3738                 return (1);
3739 
3740         case HAT_DYNAMIC_ISM_UNMAP:
3741                 return (0);
3742 
3743         case HAT_VMODSORT:
3744                 return (1);
3745 
3746         case HAT_SHARED_REGIONS:
3747                 return (0);
3748 
3749         default:
3750                 panic("hat_supported() - unknown feature");
3751         }
3752         return (0);
3753 }
3754 
3755 /*
3756  * Called when a thread is exiting and has been switched to the kernel AS
3757  */
3758 void
3759 hat_thread_exit(kthread_t *thd)
3760 {
3761         ASSERT(thd->t_procp->p_as == &kas);
3762         XPV_DISALLOW_MIGRATE();
3763         hat_switch(thd->t_procp->p_as->a_hat);
3764         XPV_ALLOW_MIGRATE();
3765 }
3766 
3767 /*
3768  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3769  */
3770 /*ARGSUSED*/
3771 void
3772 hat_setup(hat_t *hat, int flags)
3773 {
3774         XPV_DISALLOW_MIGRATE();
3775         kpreempt_disable();
3776 
3777         hat_switch(hat);
3778 
3779         kpreempt_enable();
3780         XPV_ALLOW_MIGRATE();
3781 }
3782 
3783 /*
3784  * Prepare for a CPU private mapping for the given address.
3785  *
3786  * The address can only be used from a single CPU and can be remapped
3787  * using hat_mempte_remap().  Return the address of the PTE.
3788  *
3789  * We do the htable_create() if necessary and increment the valid count so
3790  * the htable can't disappear.  We also hat_devload() the page table into
3791  * kernel so that the PTE is quickly accessed.
3792  */
3793 hat_mempte_t
3794 hat_mempte_setup(caddr_t addr)
3795 {
3796         uintptr_t       va = (uintptr_t)addr;
3797         htable_t        *ht;
3798         uint_t          entry;
3799         x86pte_t        oldpte;
3800         hat_mempte_t    p;
3801 
3802         ASSERT(IS_PAGEALIGNED(va));
3803         ASSERT(!IN_VA_HOLE(va));
3804         ++curthread->t_hatdepth;
3805         XPV_DISALLOW_MIGRATE();
3806         ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3807         if (ht == NULL) {
3808                 ht = htable_create(kas.a_hat, va, 0, NULL);
3809                 entry = htable_va2entry(va, ht);
3810                 ASSERT(ht->ht_level == 0);
3811                 oldpte = x86pte_get(ht, entry);
3812         }
3813         if (PTE_ISVALID(oldpte))
3814                 panic("hat_mempte_setup(): address already mapped"
3815                     "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
3816 
3817         /*
3818          * increment ht_valid_cnt so that the pagetable can't disappear
3819          */
3820         HTABLE_INC(ht->ht_valid_cnt);
3821 
3822         /*
3823          * return the PTE physical address to the caller.
3824          */
3825         htable_release(ht);
3826         XPV_ALLOW_MIGRATE();
3827         p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3828         --curthread->t_hatdepth;
3829         return (p);
3830 }
3831 
3832 /*
3833  * Release a CPU private mapping for the given address.
3834  * We decrement the htable valid count so it might be destroyed.
3835  */
3836 /*ARGSUSED1*/
3837 void
3838 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3839 {
3840         htable_t        *ht;
3841 
3842         XPV_DISALLOW_MIGRATE();
3843         /*
3844          * invalidate any left over mapping and decrement the htable valid count
3845          */
3846 #ifdef __xpv
3847         if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3848             UVMF_INVLPG | UVMF_LOCAL))
3849                 panic("HYPERVISOR_update_va_mapping() failed");
3850 #else
3851         {
3852                 x86pte_t *pteptr;
3853 
3854                 pteptr = x86pte_mapin(mmu_btop(pte_pa),
3855                     (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3856                 if (mmu.pae_hat)
3857                         *pteptr = 0;
3858                 else
3859                         *(x86pte32_t *)pteptr = 0;
3860                 mmu_tlbflush_entry(addr);
3861                 x86pte_mapout();
3862         }
3863 #endif
3864 
3865         ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3866         if (ht == NULL)
3867                 panic("hat_mempte_release(): invalid address");
3868         ASSERT(ht->ht_level == 0);
3869         HTABLE_DEC(ht->ht_valid_cnt);
3870         htable_release(ht);
3871         XPV_ALLOW_MIGRATE();
3872 }
3873 
3874 /*
3875  * Apply a temporary CPU private mapping to a page. We flush the TLB only
3876  * on this CPU, so this ought to have been called with preemption disabled.
3877  */
3878 void
3879 hat_mempte_remap(
3880         pfn_t           pfn,
3881         caddr_t         addr,
3882         hat_mempte_t    pte_pa,
3883         uint_t          attr,
3884         uint_t          flags)
3885 {
3886         uintptr_t       va = (uintptr_t)addr;
3887         x86pte_t        pte;
3888 
3889         /*
3890          * Remap the given PTE to the new page's PFN. Invalidate only
3891          * on this CPU.
3892          */
3893 #ifdef DEBUG
3894         htable_t        *ht;
3895         uint_t          entry;
3896 
3897         ASSERT(IS_PAGEALIGNED(va));
3898         ASSERT(!IN_VA_HOLE(va));
3899         ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3900         ASSERT(ht != NULL);
3901         ASSERT(ht->ht_level == 0);
3902         ASSERT(ht->ht_valid_cnt > 0);
3903         ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3904         htable_release(ht);
3905 #endif
3906         XPV_DISALLOW_MIGRATE();
3907         pte = hati_mkpte(pfn, attr, 0, flags);
3908 #ifdef __xpv
3909         if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3910                 panic("HYPERVISOR_update_va_mapping() failed");
3911 #else
3912         {
3913                 x86pte_t *pteptr;
3914 
3915                 pteptr = x86pte_mapin(mmu_btop(pte_pa),
3916                     (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3917                 if (mmu.pae_hat)
3918                         *(x86pte_t *)pteptr = pte;
3919                 else
3920                         *(x86pte32_t *)pteptr = (x86pte32_t)pte;
3921                 mmu_tlbflush_entry(addr);
3922                 x86pte_mapout();
3923         }
3924 #endif
3925         XPV_ALLOW_MIGRATE();
3926 }
3927 
3928 
3929 
3930 /*
3931  * Hat locking functions
3932  * XXX - these two functions are currently being used by hatstats
3933  *      they can be removed by using a per-as mutex for hatstats.
3934  */
3935 void
3936 hat_enter(hat_t *hat)
3937 {
3938         mutex_enter(&hat->hat_mutex);
3939 }
3940 
3941 void
3942 hat_exit(hat_t *hat)
3943 {
3944         mutex_exit(&hat->hat_mutex);
3945 }
3946 
3947 /*
3948  * HAT part of cpu initialization.
3949  */
3950 void
3951 hat_cpu_online(struct cpu *cpup)
3952 {
3953         if (cpup != CPU) {
3954                 x86pte_cpu_init(cpup);
3955                 hat_vlp_setup(cpup);
3956         }
3957         CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
3958 }
3959 
3960 /*
3961  * HAT part of cpu deletion.
3962  * (currently, we only call this after the cpu is safely passivated.)
3963  */
3964 void
3965 hat_cpu_offline(struct cpu *cpup)
3966 {
3967         ASSERT(cpup != CPU);
3968 
3969         CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
3970         hat_vlp_teardown(cpup);
3971         x86pte_cpu_fini(cpup);
3972 }
3973 
3974 /*
3975  * Function called after all CPUs are brought online.
3976  * Used to remove low address boot mappings.
3977  */
3978 void
3979 clear_boot_mappings(uintptr_t low, uintptr_t high)
3980 {
3981         uintptr_t vaddr = low;
3982         htable_t *ht = NULL;
3983         level_t level;
3984         uint_t entry;
3985         x86pte_t pte;
3986 
3987         /*
3988          * On 1st CPU we can unload the prom mappings, basically we blow away
3989          * all virtual mappings under _userlimit.
3990          */
3991         while (vaddr < high) {
3992                 pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
3993                 if (ht == NULL)
3994                         break;
3995 
3996                 level = ht->ht_level;
3997                 entry = htable_va2entry(vaddr, ht);
3998                 ASSERT(level <= mmu.max_page_level);
3999                 ASSERT(PTE_ISPAGE(pte, level));
4000 
4001                 /*
4002                  * Unload the mapping from the page tables.
4003                  */
4004                 (void) x86pte_inval(ht, entry, 0, NULL, B_TRUE);
4005                 ASSERT(ht->ht_valid_cnt > 0);
4006                 HTABLE_DEC(ht->ht_valid_cnt);
4007                 PGCNT_DEC(ht->ht_hat, ht->ht_level);
4008 
4009                 vaddr += LEVEL_SIZE(ht->ht_level);
4010         }
4011         if (ht)
4012                 htable_release(ht);
4013 }
4014 
4015 /*
4016  * Atomically update a new translation for a single page.  If the
4017  * currently installed PTE doesn't match the value we expect to find,
4018  * it's not updated and we return the PTE we found.
4019  *
4020  * If activating nosync or NOWRITE and the page was modified we need to sync
4021  * with the page_t. Also sync with page_t if clearing ref/mod bits.
4022  */
4023 static x86pte_t
4024 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4025 {
4026         page_t          *pp;
4027         uint_t          rm = 0;
4028         x86pte_t        replaced;
4029 
4030         if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4031             PTE_GET(expected, PT_MOD | PT_REF) &&
4032             (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4033             !PTE_GET(new, PT_MOD | PT_REF))) {
4034 
4035                 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4036                 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4037                 ASSERT(pp != NULL);
4038                 if (PTE_GET(expected, PT_MOD))
4039                         rm |= P_MOD;
4040                 if (PTE_GET(expected, PT_REF))
4041                         rm |= P_REF;
4042                 PTE_CLR(new, PT_MOD | PT_REF);
4043         }
4044 
4045         replaced = x86pte_update(ht, entry, expected, new);
4046         if (replaced != expected)
4047                 return (replaced);
4048 
4049         if (rm) {
4050                 /*
4051                  * sync to all constituent pages of a large page
4052                  */
4053                 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4054                 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4055                 while (pgcnt-- > 0) {
4056                         /*
4057                          * hat_page_demote() can't decrease
4058                          * pszc below this mapping size
4059                          * since large mapping existed after we
4060                          * took mlist lock.
4061                          */
4062                         ASSERT(pp->p_szc >= ht->ht_level);
4063                         hat_page_setattr(pp, rm);
4064                         ++pp;
4065                 }
4066         }
4067 
4068         return (0);
4069 }
4070 
4071 /* ARGSUSED */
4072 void
4073 hat_join_srd(struct hat *hat, vnode_t *evp)
4074 {
4075 }
4076 
4077 /* ARGSUSED */
4078 hat_region_cookie_t
4079 hat_join_region(struct hat *hat,
4080     caddr_t r_saddr,
4081     size_t r_size,
4082     void *r_obj,
4083     u_offset_t r_objoff,
4084     uchar_t r_perm,
4085     uchar_t r_pgszc,
4086     hat_rgn_cb_func_t r_cb_function,
4087     uint_t flags)
4088 {
4089         panic("No shared region support on x86");
4090         return (HAT_INVALID_REGION_COOKIE);
4091 }
4092 
4093 /* ARGSUSED */
4094 void
4095 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4096 {
4097         panic("No shared region support on x86");
4098 }
4099 
4100 /* ARGSUSED */
4101 void
4102 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4103 {
4104         panic("No shared region support on x86");
4105 }
4106 
4107 
4108 /*
4109  * Kernel Physical Mapping (kpm) facility
4110  *
4111  * Most of the routines needed to support segkpm are almost no-ops on the
4112  * x86 platform.  We map in the entire segment when it is created and leave
4113  * it mapped in, so there is no additional work required to set up and tear
4114  * down individual mappings.  All of these routines were created to support
4115  * SPARC platforms that have to avoid aliasing in their virtually indexed
4116  * caches.
4117  *
4118  * Most of the routines have sanity checks in them (e.g. verifying that the
4119  * passed-in page is locked).  We don't actually care about most of these
4120  * checks on x86, but we leave them in place to identify problems in the
4121  * upper levels.
4122  */
4123 
4124 /*
4125  * Map in a locked page and return the vaddr.
4126  */
4127 /*ARGSUSED*/
4128 caddr_t
4129 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4130 {
4131         caddr_t         vaddr;
4132 
4133 #ifdef DEBUG
4134         if (kpm_enable == 0) {
4135                 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4136                 return ((caddr_t)NULL);
4137         }
4138 
4139         if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4140                 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4141                 return ((caddr_t)NULL);
4142         }
4143 #endif
4144 
4145         vaddr = hat_kpm_page2va(pp, 1);
4146 
4147         return (vaddr);
4148 }
4149 
4150 /*
4151  * Mapout a locked page.
4152  */
4153 /*ARGSUSED*/
4154 void
4155 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4156 {
4157 #ifdef DEBUG
4158         if (kpm_enable == 0) {
4159                 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4160                 return;
4161         }
4162 
4163         if (IS_KPM_ADDR(vaddr) == 0) {
4164                 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4165                 return;
4166         }
4167 
4168         if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4169                 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4170                 return;
4171         }
4172 #endif
4173 }
4174 
4175 /*
4176  * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical
4177  * memory addresses that are not described by a page_t.  It can
4178  * also be used for normal pages that are not locked, but beware
4179  * this is dangerous - no locking is performed, so the identity of
4180  * the page could change.  hat_kpm_mapin_pfn is not supported when
4181  * vac_colors > 1, because the chosen va depends on the page identity,
4182  * which could change.
4183  * The caller must only pass pfn's for valid physical addresses; violation
4184  * of this rule will cause panic.
4185  */
4186 caddr_t
4187 hat_kpm_mapin_pfn(pfn_t pfn)
4188 {
4189         caddr_t paddr, vaddr;
4190 
4191         if (kpm_enable == 0)
4192                 return ((caddr_t)NULL);
4193 
4194         paddr = (caddr_t)ptob(pfn);
4195         vaddr = (uintptr_t)kpm_vbase + paddr;
4196 
4197         return ((caddr_t)vaddr);
4198 }
4199 
4200 /*ARGSUSED*/
4201 void
4202 hat_kpm_mapout_pfn(pfn_t pfn)
4203 {
4204         /* empty */
4205 }
4206 
4207 /*
4208  * Return the kpm virtual address for a specific pfn
4209  */
4210 caddr_t
4211 hat_kpm_pfn2va(pfn_t pfn)
4212 {
4213         uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4214 
4215         ASSERT(!pfn_is_foreign(pfn));
4216         return ((caddr_t)vaddr);
4217 }
4218 
4219 /*
4220  * Return the kpm virtual address for the page at pp.
4221  */
4222 /*ARGSUSED*/
4223 caddr_t
4224 hat_kpm_page2va(struct page *pp, int checkswap)
4225 {
4226         return (hat_kpm_pfn2va(pp->p_pagenum));
4227 }
4228 
4229 /*
4230  * Return the page frame number for the kpm virtual address vaddr.
4231  */
4232 pfn_t
4233 hat_kpm_va2pfn(caddr_t vaddr)
4234 {
4235         pfn_t           pfn;
4236 
4237         ASSERT(IS_KPM_ADDR(vaddr));
4238 
4239         pfn = (pfn_t)btop(vaddr - kpm_vbase);
4240 
4241         return (pfn);
4242 }
4243 
4244 
4245 /*
4246  * Return the page for the kpm virtual address vaddr.
4247  */
4248 page_t *
4249 hat_kpm_vaddr2page(caddr_t vaddr)
4250 {
4251         pfn_t           pfn;
4252 
4253         ASSERT(IS_KPM_ADDR(vaddr));
4254 
4255         pfn = hat_kpm_va2pfn(vaddr);
4256 
4257         return (page_numtopp_nolock(pfn));
4258 }
4259 
4260 /*
4261  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4262  * KPM page.  This should never happen on x86
4263  */
4264 int
4265 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4266 {
4267         panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p",
4268             (void *)hat, (void *)vaddr);
4269 
4270         return (0);
4271 }
4272 
4273 /*ARGSUSED*/
4274 void
4275 hat_kpm_mseghash_clear(int nentries)
4276 {}
4277 
4278 /*ARGSUSED*/
4279 void
4280 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4281 {}
4282 
4283 #ifndef __xpv
4284 void
4285 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
4286         offset_t kpm_pages_off)
4287 {
4288         _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off));
4289         pfn_t base, end;
4290 
4291         /*
4292          * kphysm_add_memory_dynamic() does not set nkpmpgs
4293          * when page_t memory is externally allocated.  That
4294          * code must properly calculate nkpmpgs in all cases
4295          * if nkpmpgs needs to be used at some point.
4296          */
4297 
4298         /*
4299          * The meta (page_t) pages for dynamically added memory are allocated
4300          * either from the incoming memory itself or from existing memory.
4301          * In the former case the base of the incoming pages will be different
4302          * than the base of the dynamic segment so call memseg_get_start() to
4303          * get the actual base of the incoming memory for each case.
4304          */
4305 
4306         base = memseg_get_start(msp);
4307         end = msp->pages_end;
4308 
4309         hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base),
4310             mmu_ptob(end - base), base, PROT_READ | PROT_WRITE,
4311             HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4312 }
4313 
4314 void
4315 hat_kpm_addmem_mseg_insert(struct memseg *msp)
4316 {
4317         _NOTE(ARGUNUSED(msp));
4318 }
4319 
4320 void
4321 hat_kpm_addmem_memsegs_update(struct memseg *msp)
4322 {
4323         _NOTE(ARGUNUSED(msp));
4324 }
4325 
4326 /*
4327  * Return end of metadata for an already setup memseg.
4328  * X86 platforms don't need per-page meta data to support kpm.
4329  */
4330 caddr_t
4331 hat_kpm_mseg_reuse(struct memseg *msp)
4332 {
4333         return ((caddr_t)msp->epages);
4334 }
4335 
4336 void
4337 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
4338 {
4339         _NOTE(ARGUNUSED(msp, mspp));
4340         ASSERT(0);
4341 }
4342 
4343 void
4344 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
4345         struct memseg *lo, struct memseg *mid, struct memseg *hi)
4346 {
4347         _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi));
4348         ASSERT(0);
4349 }
4350 
4351 /*
4352  * Walk the memsegs chain, applying func to each memseg span.
4353  */
4354 void
4355 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
4356 {
4357         pfn_t   pbase, pend;
4358         void    *base;
4359         size_t  size;
4360         struct memseg *msp;
4361 
4362         for (msp = memsegs; msp; msp = msp->next) {
4363                 pbase = msp->pages_base;
4364                 pend = msp->pages_end;
4365                 base = ptob(pbase) + kpm_vbase;
4366                 size = ptob(pend - pbase);
4367                 func(arg, base, size);
4368         }
4369 }
4370 
4371 #else   /* __xpv */
4372 
4373 /*
4374  * There are specific Hypervisor calls to establish and remove mappings
4375  * to grant table references and the privcmd driver. We have to ensure
4376  * that a page table actually exists.
4377  */
4378 void
4379 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma)
4380 {
4381         maddr_t base_ma;
4382         htable_t *ht;
4383         uint_t entry;
4384 
4385         ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4386         XPV_DISALLOW_MIGRATE();
4387         ht = htable_create(hat, (uintptr_t)addr, 0, NULL);
4388 
4389         /*
4390          * if an address for pte_ma is passed in, return the MA of the pte
4391          * for this specific address.  This address is only valid as long
4392          * as the htable stays locked.
4393          */
4394         if (pte_ma != NULL) {
4395                 entry = htable_va2entry((uintptr_t)addr, ht);
4396                 base_ma = pa_to_ma(ptob(ht->ht_pfn));
4397                 *pte_ma = base_ma + (entry << mmu.pte_size_shift);
4398         }
4399         XPV_ALLOW_MIGRATE();
4400 }
4401 
4402 void
4403 hat_release_mapping(hat_t *hat, caddr_t addr)
4404 {
4405         htable_t *ht;
4406 
4407         ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4408         XPV_DISALLOW_MIGRATE();
4409         ht = htable_lookup(hat, (uintptr_t)addr, 0);
4410         ASSERT(ht != NULL);
4411         ASSERT(ht->ht_busy >= 2);
4412         htable_release(ht);
4413         htable_release(ht);
4414         XPV_ALLOW_MIGRATE();
4415 }
4416 #endif  /* __xpv */